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ABSTRACT

This work demonstrates a comprehensive methodology for capture, analy-
sis, manipulation, and reproduction of spatial sound-radiation. As the challenge
herein, acoustic events need to be captured and reproduced not only in one but in
a preferably complete multiplicity of directions, instead. The solutions presented
in this work are using the soap-bubble model, a working hypothesis about sound-
radiation, and are based on fundamental mathematical descriptions of spherical
acoustic holography and holophony. These descriptions enable a clear methodic
approach of sound-radiation capture and reproduction. In particular, this work
illustrates the implementation of surrounding spherical microphone arrays for the
capture of sound-radiation, as well as the analysis of sound-radiation with a func-
tional model. Most essential, the thesis shows how to obtain holophonic reproduc-
tion of sound-radiation. For this purpose, a physical model of compact spherical

loudspeaker arrays is established alongside with its electronic control.
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KURZFASSUNG

Diese Arbeit beinhaltet eine umfassende Methodik zur Aufnahme, Ana-
lyse, Manipulation und Wiedergabe von rdumlicher Klangabstrahlung. Die neue
Herausforderung liegt darin, akustische Ereignisse nicht nur in einer Richtung,
sondern einer moglichst vollstéandigen Vielzahl an Richtungen zu erfassen und wie-
derzugeben. Die Losungen in dieser Arbeit gehen vom Seifenblasenmodell, einer
Arbeitshypothese iiber die Schallabstrahlung, aus und stiitzen sich auf mathema-
tische Grundbeschreibungen von kugelférmiger akustischer Holografie und Holo-
phonie. Diese Beschreibungen ermoglichen einen klaren methodischen Zugang zu
Abstrahlungsaufnahme und -wiedergabe. Insbesondere wird damit die Umsetzung
von umgebenden kugelférmigen Mikrofonanordnungen zur Abstrahlungsaufnahme
sowie die Auswertung der Abstrahlung anhand eines funktionalen Modells gezeigt.
Als wesentlichsten Beitrag zeigt die Dissertation, wie Abstrahlung holophon wie-
dergegeben werden kann. Dazu wird herausgearbeitet, wie kompakte kugelférmige
Lautsprecheranordnungen physikalisch modelliert und elektronisch gesteuert wer-

den.
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Chapter 1

INTRODUCTION

In order to explain the purpose of analysis and synthesis of spherical sound-
radiation, it is crucial to get an overview of the history and soil this particu-
lar research interest has grown on. Mainly, this work finds motivation from two
research areas.

Firstly from the music or computer music perspective, the motivation for di-
rectivity pattern synthesis is associated with loudspeakers and their application as
musical sound sources. According to the articles [Cur00] and [LSO06], acoustic di-
rectivity pattern synthesis mimicking the sound-radiation of musical instruments
starts in the nineteen seventies, with some criticism by Pierre Boulez about the
quality of loudspeaker playback.

Secondly, room acousticians use sophisticated software packages that facilitate
the acoustical design process, taking into account the directivity of sound sources.
In principle, these software packages are able to simulate the basic quality measures
in room acoustics but also offer realistic simulations of virtual sound scenes to make
audible an acoustic room in its early design stages. Usually, the sound sources can
be endowed with their own directivity to get more accurate simulation results. On
the other hand it is interesting to evaluate excellent concert hall acoustics also by
measurements of its directional characteristics. For this purpose, the capability of

directional measurement and radiation becomes necessary.

Evidence on perceived sound-radiation. According to information provided
by René Caussé (IRCAM), and the hints from Gerhard Eckel, Adrian Freed, and
David Wessel, there was an experiment on the sound radiated from a violin, con-
ducted some decades ago at IRCAM in Paris. The experiment has never been
published, but had a rather important impact and serves as a motivation for the
present work. René Caussé states that the experiment was presented to the au-
dience at the conference “Artelier Ircamﬂ” at IRCAM in 1989. According to his
statement, it was conducted by Jean-Marie Adrien, Peter Eotvos, and Olivier
Warusfel. Three versions of a violin sound were presented to the auditorium,
cp. Fig. [1. The first was coming from a real violin played by a violinist. The

second sound originated from a violin playback over a single loudspeaker taken

ISubtitle: “Maitriser 'espace: une étude sur le rayonnement des sources sonores”
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Figure 1: Violin radiation demonstration at IRCAM.

from a recording with a single microphone. The third version was produced by
the vibration of the violin bridge reconstructed at the bridge of a stand-mounted
ViolinE )

In contrast to the loudspeaker playback, the sound radiated by the artificially
excited violin has been described as lively and present, exhibiting much bigger
similarity to the violin played by the violinist. This demonstration is regarded
being a strong evidence for the perceptual influence of sound-radiation; even if it
is unknown to what extent sound-coloration has been isolated as a possible cue

by equalization.

Systematic directivity capture and reproduction? It might be a good idea
regard sound-radiation of sources separately from its diffusion into rooms. In order
to systematically develop tools for directivity analysis and synthesis, two questions

should be posed:
e How do we determine the overall directivity patterns of sound sources?

e How can we make room acoustics measurements with directivity adjustable

to particular kinds of natural sound sources?

1.1 A Soap-Bubble Model of Sound-Radiation

Before getting into the details in the subsequent sections, I offer an illustrative

image of how to interpret sound radiation, capture, and synthesis of sound sources.

2Qriginal announement: “La prise de son sur le violon est réalisée par deux céramiques
piezoélectriques placées au bas des pieds de chevalet. Les deux cristaux sont sensibles a la force
dynamique qui leur est appliqué, et sont suffisemment durs et 1égers pour supporter la pression
statique exercée par les cordes, et ne pas modifier le fonctionnement du chevalet. L’ensemble est

monté sur un violon de qualité.”



Let us assume a free sound field (no sources or obstacles) and an ideag soap bubble
that is large enough to enclose a musician and an instrument. As the instrumen-
talist produces sounds, the soap-bubble surface vibrates strictly according to the
motion of the air molecules. The wave-form of the vibration represents the sound
radiated to the respective point of observation on the sphere. Generally, the qual-
ity of the sound may vary between different points of observation. Specifically,
the loudness and timbre of the radiated sound is dependent on the position of the

observer with respect to the instrument.

Figure 2: Soap-bubble model of acoustic radiation.

Capturing the radiated sound. According to literature on acoustics (e.g.
Williams [Wil99]), it is sufficient to completely identify the motion of this contin-
uous surface in order to describe the acoustic sound-radiation of enclosed sound
sources entirely. This type of setting is called exterior problem. A continuous
capture of this motion may seem out of reach, but spatial sampling of the spher-
ical surface with microphones, i.e. a surrounding spherical microphone array, is
feasible, see Fig.

Reproducing the radiated sound. Given a suitable arrangement of loud-
speakers (ideally a spherical membrane that can be driven in every mode of vi-
bration at every frequency) the acoustic radiation from a sound source can be
reproduced entirely. The goal is to produce the same patterns of motion on a
soap bubble around this technical device as those, the capture of which has been

described above. A feasible way of achieving this is again to sample the spherical

3The surface of the bubble must not have mass, stiffness, or friction.



Figure 3: Capturing the sound-radiation of the bonang barung with 26 microphones in
a hemispherical arrangement in an acoustically damped chamber at IEM (in the picture:
Rainer Schiitz (Institute of Ethnomusicology, Graz) playing it).

surface with individually driven loudspeakers, i.e. a compact spherical loudspeaker

array.

What has been neglected implicitly? To capture the sound appropriately,
the microphones and the surrounding room must not be an obstacle in the sound
field, i.e. they must not cause reflections of the radiated sound. Otherwise the
problem becomes a mized interior and exterior problem, cf. [Wil99].

In free-field conditions, or an anechoic measurement chamber, a playback de-
vice can be matched as to produce the same directivity pattern as measured
from an instrument. However, when operating in ordinary rooms, i.e. a differ-
ent acoustic load, sound sources with the same free-field sound-radiation might
produce different sound-radiation. This is due to the different shape, different in-
ner impedance, and different reflection or diffraction characteristics. As a rigorous
assumption, the influence of these aspects will be neglected in the following con-
siderations. In fact, this assumption might hold as many instruments have a much

higher mechanical impedance than the sound field (maladjustment of impedances).

1.2 Musical Instrument Model

Whoever has played a musical instrument has experienced that the production
of musical sounds depends on many parameters. For most instruments, a huge
variation of the sound can be achieved by slightly changing parameters or config-
urations of the instrument. Essentially, several parameters have an impact on the

timbre, the pitch, or other properties of the sound, see Fig. 4.
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Figure 4: A generic musical instrument model illustrates that many parameters may
be involved in the process of sound production with musical instruments.

In order to get reproducible and clean measurements of the musical acoustics

of instruments, there are usually two classical strategies:
e “playing” musical instruments artificially, i.e. with robotic devices
e ‘“playing” artificial musical instruments, i.e. physical models

From a musical point of view, one could easily argue against both approaches: well-
trained musicians might be better in playing musical instruments than scientists
playing the instrument artificially, or playing artificial musical instruments for the

purpose of a measurement?.

4The corollary that musicians are better in either playing musical instruments artificially, or
playing artificial musical instruments than scientists playing natural musical instruments might

be incorrect and fail :-).



Instrumental sound plus radiation analysis and synthesis developed within in

this thesis can be summarized as to follow an alternative hypothesis:

Hypothesis

e Natural conditions for production of musical sounds with instruments de-
pend on many control quantities (playing techniques, time-variant instru-
ments, ...) thus technical mounting and excitation seems inappropriate,

and it is hard to provide all synthesis parameters properly.

e Synchronous recordings of multi-channel microphone array sound samples
with musicians can be considered being the most realistic mode of analyzing

sound and radiation.

1.3 Organization of Contents

In the second chapter of this thesis, acoustics in spherical coordinates, i.e. the
solutions of the Helmholtz equation (wave equation in the frequency domain), is
revisited as a mathematical /physical basis of all the following chapters. Advanced
readers may skip this section. However, some practical aspects about boundary
value problems and the description of sources are given.

The third chapter describes how the base solutions of the acoustics in spher-
ical coordinates can be manipulated in various ways. Above all, it shows how
canonic forms of coordinate transforms affect the spherical base-solutions, and
their implementation for the real-valued spherical harmonics is described as well.
Furthermore, hints on other manipulations like correlation, multiplication, trunca-
tion and its relevance, as well as important relations between circular and spherical
convolution are given.

As being essential for all kinds of discrete-space spherical boundaries, the fourth
chapter describes how to discretize the spherical surface using microphones or
loudspeakers for holographic analysis or holophonic synthesis. It provides a com-
prehensive overview of the literature about sampling and transform strategies on
spherical surfaces, which is the key to the decomposition of measured and recon-
structed fields into spherical base-solutions.

The fifth chapter elaborates on the practical capture and analysis of radiating
sound with spherical microphone arrays surrounding the source. Based on an
overview of existing works, a generic principle of acoustic sound-radiation and the
problem with the retrieval of the primal signal is given. As a holistic solution,
additive analysis and synthesis of partials, in sound and radiation, is given, based

on the total-power spectrogram gathered from all microphones. The chapter shows

10



the analyses of some musical instrument sounds and their graphical representation,
including two special cases exploiting spherical symmetries. It concludes with an
outlook on adaptive blind channel identification, and an outlook on parametric
sound-radiation models.

The sixth chapter presents the second practical contribution in this context:
The application of compact spherical loudspeaker arrays for sound-radiation syn-
thesis based on practical measurement data. Measurements with microphones
and laser-vibrometry are considered as suitable means within this chapter. Fur-
thermore, a model consisting of a solid sphere with individually vibrating discrete
spherical caps and a continuous spherical membrane are introduced and stud-
ied. The first model concludes with a complete electroacoustic system analysis,
illustrating the capacities of compact spherical loudspeaker arrays and directivity
control thereof. The latter model illustrates that, inside compact spherical loud-
speaker arrays, a common interior volume is beneficial. Moreover, efficient control
and radial beamforming are briefly discussed.

The seventh and last chapter gives a general conclusion and offers an outlook

on future work.

11
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Chapter 11

ACOUSTICS IN SPHERICAL COORDINATES

This extended review of theoretical basics intends to provide a thorough under-
standing of the relations required to solve the soap-bubble problem. Hereby, this
chapter introduces fundamental mathematical descriptions, not only capable of
solving the sound-radiation capture and playback problem but also various other
problems that share a simple description in the spherical coordinate system. The
chapter aims to work as a detailed reference, the content of which is collected from
many sources in literature, in order to give a comprehensive overview of under-
lying principles and problems. Specifically, it shows the standard solution of the
wave-equation (in particular the Helmholtz equation) in spherical coordinates,
representations of point and plane-wave sources, as well as spherical boundary

value problems.

The wave-equation. The linear lossless wave equation for the time-domain
sound pressure p (r,t) and the Euler equation for the particle velocity v (7, t) can
be written as (see Franck Giron [Gir96], Earl G. Williams [Wil99], and Nail A.

Gumerov and Ramani Duraiswami [GD04]):

Ap(rt) = (r.1), (1)

p0ﬁ<r7t) = _Vp<r7t)7 (2)

where 7 is the position vector in space R?, ¢ the time variable, ¢ the speed of
sound, V = 9/0r is the gradient, A = VTV the Laplacian, () = 8/0t the first

and () = 02 /0t* the second derivative with respect to time, and py the air density.
Within the Fourier expansion integral p (r,t) = [~ p(r,w) ¢“' dw, the wave
equation simplifies to the Helmholtz equation. With c%;b'(r,w) = Of—f p(r,w)
and pg O (r,w) = (lw) po v (r,w), as well as the wave-number k = w/c, Egs. (1)

and (2) become:

(A+ k) p(r,w) =0, (3)

% kv(r,w)=-Vp(r,w). (4)

The Helmholtz equation can be solved according to the definition of the gradient

and the Laplacian in the respective coordinate system. In Cartesian coordinates

V = (0/0x,0/0y,8/0z)", and A = 82/0x% + 0%/dy? + 92 /92

13



In the remainder of this thesis, Fourier coefficients are used to describe the
sound pressure p (r) = p(r,w), and velocity v (r) = v (r,w). We omit the fre-

quency variable w for better readability.

2.1 Solving the Helmholtz- Equation in Spheri-
cal Coordinates
In order to determine the expression for the gradient V and the Laplacian A in

spherical coordinates, the relations between Cartesian and spherical coordinates

have to be considered

cos(¢) sin(¥) r Va? +y? + 2
=7 | sin(p)sin() |, #= | actan(l) | (5

2
cos(1) 9 arctan (7”33??’2)

The spherical coordinates r, ¢, and ¢ are called radius, azimuth and zenith angle,

<
Il
SIS

respectively. The Laplacian for the spherical coordinate system is computed from
the chain of the partial derivatives V, = V,#T V4, see Eq. (122), hence A =
VI (V,#7)" (V,#T) V. Its definition yields [BSMMO1]:

Ap(r)=A,p(r)+ A, p(r)+ Ay p(r) (6)

1 0*r%p(r) 1 p(r) 1 o (. . ..0p(r)
2o r2sin?(0) Jp? Tz sin(0) 90 <s1n(19) o ) '

A homogeneous solution of the Helmholtz equation Ap (r)+k?p (r) = 0 is found

with the product ansatz and separation of variables [Wei08]:

p(r) = R(kr)®(p)0(0), (7)

p(r).| Ap(r)+kp(r)=0 (8)
1 ) 1 1 _
Ty RO 4 4 s A () + 580 O(0) = 0 (9)

To separate the above into three differential equations in r, ¥, and ¢, the terms

dependent on the respective other two quantities are replaced by constants:

ey far )+ 4 =
1 1 0? _ m?
B(p)  rZsin?(V) 8_@2(1)((‘0) o ( :17")2 sin? () , : (10)
1 1 9 : 0 n(n m
©@)  rZsin(¥) 99 (Sln<ﬂ>8_l9@(19)) T2 + r2 sin%(9)

With the numbers n(n + 1) and m? involved in the separation constants on the
right hand side of Eq. (10), the Helmholtz equation is split up into three differential

equations known from literature. Using positive integer indices n,m € N®: m <n

14



provides complete harmonic sets of orthogonal solutions on the intervals 0 < r <
00, 0 < ¥ < 7 and the periodic interval 0 < ¢ < 27 [Zi095]. In particular, these
are a spherical Bessel differential equation for R(kr), a linear differential equation
for ®(¢), and an associated Legendre differential equation for ©(cos(?)) = ©(1),
and g = cos(¥) cf. [Wei08, BSMMO1]:

sy (kr)2R(kr) + [(kr)? = n (n + 1)] R(kr) 0
Z50(p) + m?®(p) =lo|. (11)
0

2

2 [;ﬂ%é(@} + [n (n+1)— 1’?7] O(n)

The spherical Bessel and Neumann functions or the Hankel functions of the
first and second kind solve the spherical Bessel differential equation. The linear
differential equation is solved by sines and cosines, or complex exponentials, and
the Legendre differential equation is solved by Legendre functions of the first and
second kind. Symbolically, the complete set of solutions for the ansatz functions
in p(r) = R(kr)®()O(V) is written as

R(kr) = Ry(kr) = {ja(kr), ya(kr) | KD (kr), B (kr)}, (12)
D(p) = Pp(ip) = {sin(mep), cos(myp) | e}, (13)
O) =0, (0) ={F" (1), Qn'(1)}- (14)

2.1.1 Selection of Physical Solutions

In acoustics, the above solutions of the Helmholtz equation are used to describe
source-free sound fields. These source-free fields are separated from source-domains
by a spherical boundary, on which the sound pressure or particle velocity can be
described by convergent, non-singular angular solutions. Using both angular and
radial solutions, the whole source-free part is mathematically fully described due
to the known values on its boundary. The source-free field must not contain sin-

gularities, and is often referred to as the region of convergence.

Feasible angular solutions. For the dependency on p, typically the Legendre
functions of the second kind (slashed-through below) are omitted due to their
singularities at y = 41, which render them useless for the description of spherical

boundary value problems!

O (V) = {5 (n), Q7{m)} - (15)

!Note that a slight variation of the radius towards the source-free part of the field must

make singularities vanish from the spherical boundary. This is impossible if already the angular
functions are singular. However, Legendre functions of the second kind have to be considered

when dealing with prolate/oblate spheroidal coordinates, cf. [Wik08a].
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In azimuth ¢, the selection of either the complex exponential or the real val-
ued sine and cosine harmonics does not affect the applicability of the angu-
lar solutions. Alternatively, the real-valued version can be written in terms of
Chebyshev polynomials of the first 75, (cos (¢)) = cos (me) and the second kind

V1 —cos? () Up_1 (cos (p)) = sin (mep). A selection has to be made arbitrarily.
There are two options of excluding the functions with slash-through

() = {sin(myp), cos(mp) e}, or (16)
d,,(p) = {sin mep) mey) eiim*"} . (17)

For convenience, the combination of both angular solutions is usually denoted by
a single symbol Y, the spherical harmonic. Its dependency on both angles can

be expressed by a unit vector

cos(¢) sin(¥})
0 = | sin(p)sin(¥) | - (18)
cos(1)

Usually the range for m is redefined as m € Z : —n < m < n, which facilitates
the selection between the different azimuth harmonics, see Sec.[2.2. With a scalar
orthonormalization constant Nyllml, the real-valued spherical harmonics are written
as
Y;(8) = NI @,,(¢) Ol (9). (19)
Feasible radial solutions. The selection of admissible radial functions is also
done by regarding the singularities of the functions involved. For interior boundary
value problems, the functions must not be singular inside a bounded domain kr <
kry — oo, which may reach infinite size. The only feasible solution is the spherical
Bessel function j,(kr) because it is regular for every kr > 0.
Conversely, for exterior boundary value problems the functions may be singular

at kr < kro and must be non-singular at kr > kry > 0. This requirement is

met by all radial solutions. Using the radial impedance z,.(kr) = fr (&rr)) of the
free sound field, the acoustic power can be written as depending on the sound
pressure only w(kr) = p(kr) v (kr) = |p(kr)|?/z.(kr). According to Sommerfeld’s
radiation condition, radiating functions must provide a positive and real-valued
power dissipation w(kr) in the far-field. This requires a purely resistive impedance
limy, .o 2(kr) € RT. In fact, the impedance approaches the impedance of the
one-dimensional plane-wave in the far-field limy, . z.(kr) = poc. With the Euler

equation ipgcv,(kr) = —% p(kr), this identity directly yields the Sommerfeld
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radiation conditionH [WikO8b]

oo dpep(kr) o
Lm( L) P ) (20)
lim <%p (kr) —i—ip(/{;'r’)) o, (21)

With the above definitions, only the spherical Hankel function of the second kind
hg)(krr) fulfills the Sommerfeld radiation condition, see Appendix [A. The set
of solutions for the interior boundary value problem (regular) and the exterior

boundary value problem (singular) is consequently reduced to the functions:

R (kr) = {jnkr ), yn ke HEET), B2 (k } (22)

The spherical Bessel functions are real-valued and therefore represent harmonic
standing waves. Conversely, spherical Hankel functions of the second kind are
waves travelling towards kr — oo with increasing time ¢ — oco. As all hg)(krr)
share the expressions e 7 the expansion in e“! and observation of a point of
constant phase on the wave —ikr + iwt = const. demonstrates this behavior.

As the two radial functions have a Wronskian cf. [AW04, Wil99, BSMMO1]

that is unequal to zero, they form a set of independent solutions:

Ja(kr) B (kr)
g (kr) R (kr)

W(kr) = = Ju(kr) I (kr) = j, (kr) b (kr) =

2.2 Spherical Base-Solutions

The total solution is given as a sum of feasible solutions Egs. (19) (22) of the
Helmholtz equation, cf. [Gir96, Wil99, GD04]:

p(kr,0) Z Z bmijn (k7) + Comh? (l{;'r’)] Y (0), (24)

n=0 m=—n

—Z Z (b R™ (kr,0) 4 ¢ S™ (K1, 0)]

n=0 m=—n

with Y,”"(6) are the normalized spherical harmonics depending on the unit vector
6. j,(kr) are the spherical Bessel functions, and h,(f)(krr) are the spherical Hankel
functions of the second kind depending on the product of wave-number and radius
kr. Equivalently, R (kr,0) = j,, (kr) Y, (0) is the regular incident field solution,
and S (kr, 0) = h?) (kr) Y™ (0) is the singular radiating field solution, cf. [GD04].
bnm and ¢, can be called the wave spectrum of the incident and radiating field,

respectively.

2Note that the Sommerfeld radiation condition will look different if e ~*? is used for harmonic

expansions with respect to frequency.
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Spherical harmonics. The spherical harmonics are base functions for a har-
monic decomposition of distributions on the two-dimensional sphere $? (depicted
in Fig. 5). For example, in this sense the spherical harmonics can be applied to
describe the vibrational modes of a spherical surface. In contrast to the Fourier
kernel on the plane R?, which equals e*=Tel*s¥ the complex-valued spherical har-
monics are defined as:

Y, (8) = N &, () ©7(9). (25)

n

The associated Legendre functions P\ (1) determine the transform kernel in p =
cos(¥) with the zenith angle 1, whereas in azimuth (=latitude) direction, we obtain
the Fourier-kernel e™¥; the spatial frequency indices aren € Ngand m € Z : —n <
m < n. NJ™ is a scalar normalization constant. Usually, the index n is referred
to as order and the index m as degree3. In many cases it is sufficient to use the

real-valued spherical harmonics:

Y (6) = NIl Pl (cos (9)) - sin (mg) , for m <0, (26)

" cos (my) , for m > 0.
With the normalization constant N,'Lm| the spherical harmonics describe an or-

m=-4 m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3 m=4

- ©
- 0060
- @Q000O0
- @QOCO0000
-~QOCL0COC00

Figure 5: The real-valued spherical harmonics for n = 0...4 as modes of vibration
on a spherical surface. The index n (order) counts the nodal circles, and |m| (degree)
counts those running through the north and south pole.

thonormal set of base functions. Orthonormality holds as the integral (inner

product) of two spherical harmonics over the sphere vanishes for different indices

3In many mathematics and physics textbooks the nomenclature is just the opposite. Most
literature on spatial audio and spherical harmonics, however, uses these labels. Thanks to Nail

A. Gumerov for clarification.
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and equals unity otherwise. Accordingly, the property is written using a product

of Kronecker deltas:

/ Y™ () Y (0) dO = St Sy (27)
g2
Using the orthonormality, a spherical harmonics transform integral of ¢ (8) can be
given:
Z Z Yo Y () \Y,{“(e),/ de
/ Omlf S2
/ (6) Y," (6) 6 = ZZ%m/Ym Y™ (8) do
SQ / Omlf
JRICRET 8= S s o
52 n'=0m/=—n'
= [ g(0) Y,;"(8) db =: v (28)

SQ

SHT {g9(0)} =: Vam-

Without truncation, the expansion of 7,,, in spherical harmonics is complete
DD V(0)=9(0), (29)

and fulfills the Parseval theorem

JRZCIRCES DD SIS (30)

n=0 m=—n

Normalization constant. The normalization constant N is defined as:

N (_1)m\/(2n+1) (2= 6,) (n —m)! a1

47 (n+m)V

wherein ()! is the factorial. In Appendix B a recurrent computation of N is given

for efficient numerical implementation.

Legendre functions. The associated Legendre functions can be determined by
the following recurrence relations for m > 0, cf. [Wil99, GD04, Wei08]:

R = 1 (32)

P'(p) = —2n—-1DP" (W) /1—p2 VneZ:n>0 (33)

P p) =  (2n—1)uP "} (u) VneZ:n>0 (34)
(n=m) P (n) = (2n—=1)pB" (n) = (n+m—1) B, (1) (35)

VnmeZ:n>30<m<n—2
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For negative m, the following relation holds [Wei08]:

m e () (36)
(n+m) " K-

P () = (1)
Usually, it is efficient and stable to use the recurrence relations on the numerical
values directly. For other, mathematical purposes, it might also be advantageous
to store the polynomial coefficients. Appendix B gives a structure to store these

coefficients, which can also be calculated using the recurrence relations.

Spherical Hankel-, Bessel-, and Neumann-functions. The spherical Bessel
function can be derived from the sinc(kr)-function sin(kr)/ (kr), [Wei08]:

. w oy d " sin(kr)
= (—1 .
e o o (37)
Similarly, the spherical Neumann function is derived from — cos(kr)/ (kr)
d " cos (kr)
a k — (-1 n+1 ]{Z n ) 8
o (k) = (-1 )" (s ) (39)

The spherical Hankel function hgll)(kr) is a complex-valued composite of both

Jn(kr) and y, (kr); hg)(kr) is its complex conjugate:
WD (kr) = g (kr) +iy, (kr), B =AD" (39)

All radial functions allow for a computation with the same recurrence rela-
tion. We use the generic term f,,(kr) that can be replaced for each distinct radial
solution f,(kr) = {jn(kr), yn(kr), A (kr), B2 (kr)}, cf. Williams [Wil99]:
2n —1

kr

fu (kr) = fr1 (kr) — fr_o (kr). (40)

The derivatives that are necessary to obtain the radial velocity v, () out of Egs. (2)
and (24]), are defined as, cf. [Wil99, GD04, Wei08]:

n-+1
kr

S (k) = fooa (k1) — Jo (kr). (41)

The spherical Bessel and Neumann functions and their derivatives are depicted
in Fig.|6. In practice, it is rather important to understand the asymptotic behavior
of the magnitudes of the spherical Hankel functions. Their so-called near- and far-
field regions, see Fig. [7, explain the properties of sound-radiation of higher-order
sources. In particular, higher-order components decay rapidly with increasing
radius within the near-field of a source. In the far-field of a source, however, all
orders share the same rate of radial decay. For instance at kr = 1, a fourth order
source has to be 40dB louder than a monopole to achieve the same sound pressure
at kr > 8.
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spherical Bessel-function spherical Bessel-function derivative

1 n=0 1 n=0
-=n=1 | ey n=1
- - - =2 - - = =2
< 0.5 h=3 T 05
:: O AN, i n=4 :C '
0 .:..o \\\\ 3 ',’\'\" 0¥
-0.5 : . -0.5
0 5 10 0
kr
spherical Neumann-function
1 n=0
= =n=1
=-==n=2
g 05 . n:3 g
>,.C """" n=4 ’>C
0 . 2 "‘.-
_05 L
0 5 10

Figure 6: Spherical Bessel- and Neumann functions and their derivatives are the radial
solution of the Helmholtz equation in the spherical coordinate system.

The asymptotic behavior of the near-field region of the Bessel function is also
helpful to describe source-free incident fields. Note that in Appendix|C, it is shown
how to circumvent numerical errors in the proximity of kr = 0 for high orders.
For both functions we obtain (cf. [AW04])

}h(l 2 (1 ) (2n + DN/ (kr)"*",  in the near-field kr < 2 (42)
W2 (kr)| o
1/ (kr), far-field @ <L kr

Jn (kr) o< (kr)" /(2n+ 1!, in the near-field kr < /2(2n +3).  (43)

21



magnitude of the spherical Hankel function
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kr
magnitude of the differentiated spherical Hankel function
80F n=0
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kr

Figure 7: The magnitudes of the spherical Hankel functions and their derivatives
clearly indicate the near- and far-field ranges of the functions.
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2.3 Spherical Boundary Value Problems

Boundary value problems are used to describe the convergent, source-free part of

a sound field, given its boundary values. Spherical boundary value problems can

be split up into three main types of problems, enumerated below. In all cases,

assume the boundary values of the source-free field are known on one or two

spheres, concentric to the origin.

1. Interior Problem: The spherical sound pressure distri-

bution p (krg, @) (Dirichlet problem) or particle veloc-

ity distribution v, (krg, @) (Neumann problem) due to

sources outside rq is given/known from measurements.

The interior free-field for r < ry is fully described math-

ematically and can be evaluated at every point*.

2. Exterior Problem: A Dirichlet boundary value condi-

tion p (krg, @) or a Neumann boundary value condition

vy (kro, @) due to sources inside ry is given/known from

measurements. The exterior free-field for r > ry is fully

determined.

3. ,,Mixed“ Problems

(a)

[: Two Dirichlet boundary conditions p (kry,8)
and p (krg, 8), or two Neumann boundary condi-
tions v, (krq, @) and v, (kry, @) due to sources both
inside r and outside r; are given/known from
measurements at two concentric spheres 0 < r; <
ro. The free-field enclosed between the spheres is
fully determined%.

II: Two Dirichlet boundary conditions p (kry, 0)
and p (kry,0), or two Neumann boundary condi-
tions v, (krq, 0) and v, (kr1,0) due to sources be-
tween 7 and ry are given/known from measure-
ments at two concentric spheres 0 < r; < ro. The
two free-fields, one enclosed by the smaller sphere,
the other one outside the larger sphere, are fully

determined®.

- - - -
\"“.- ¢ . "‘:
N Y
-c.: %4
I: 'f‘

-
& Jix
.
P LR

4 As demonstrated in the example later, interior problems, or problems with irradiating fields,

exhibit some exceptions. These are due to the zeros of the spherical Bessel functions j,(kr),

or its derivative j/ (kr) at specific frequencies. At those frequencies, the sound pressure or the

sound particle velocity, respectively, cannot produce n'* order components of a field, alone.
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(c) II: A Dirichlet or Neumann boundary value is
given at a spherical surface with radius 7y, which

can be due to an incident or radiating field. As-

sume scattering of the field by a medium having
another impedance z and lying inside, outside, or
at the radius rg, respectively. This impedance can
be either defined in the spherical harmonics or
space domain, depending on its modal or angular

characteristics.

Figure 8: Schematic sketch of four spherical boundary value problems. Red dots
represent sources of radiation and the grey particles obstacles to the sound field. The
(virtual) spherical surfaces are enclosing/excluding homogeneous acoustic fields.

Note that the spherical boundary conditions above are prototypes for obtain-
ing simple analytic solutions in terms of the spherical base-solutions. Arbitrary
boundary conditions can generally be more complicated, possibly involving mul-
tiple scattering, angle dependent impedances, non-concentric spheres, and non-

spherical geometries.

2.3.1 Spherical Wave Spectrum

For spherical boundary value problems, in which r is constant, it is useful to stay
within the domain of spherical harmonics, i.e., not to perform the expansion into
the angular variable 8. According to Williams [Wil99|, this domain is called the
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spherical wave spectrum
U (kr) = SHT {p(kr,0)} . (44)

The radial component v)”* (kr) of the sound particle velocity in the spherical wave

spectrum is related to the pressure by the Euler equation Egs. (2), (4)

V:Ln (k?‘) =SHT {UT (]{ZT’, 0)} )

. m __g m r) = — 8 m r
ipoc kv (hr) = =5 03 (br) = —h g o (k). (45)

The expansion of spherical wave spectra is straightforward, using:
p(kr,0) =y (kr) Y, (6). (46)

Particularly, pressure and particle velocity spectra are obtained from Egs. (24),

(44), and (45)

Y (kr) = bmin (k) 4+ Camh® (k) (47)
o (k) = — [bumdt (k) + cnmh® (k)] (48)
Poc

In practice, spherical wave spectra are determined by a finite set of spatially dis-
crete probes from acoustic measurements of p(krg, 8;) or v.(kro, 8;) with a set of
microphones. To convert the measurement data into spherical wave spectra, dis-
crete spherical harmonic transforms (DSHT) have to be approximated under the
assumption of angularly band-limited distributions (see Sec. [4.2).

Considering the regular and singular solutions j, (kr) and h$? (kr) in Sec.[2.1.1]
one family of coefficients b,,, and c¢,,, must vanish for pure interior or exterior

problems:
1. Exterior problems: b,,, = 0.

2. Interior problems: c¢,,, =0,

2.3.2 Spherical Boundary Value/Condition Examples

Example 1: Exterior problem, radiation into free-field. Assuming a
purely radiating field, the coefficients ¢, of the exterior problem (singular so-
lution) are determined by the spherical wave spectrum of the sound pressure or
particle velocity at a given radius ry. For radiation capture, the microphone-
measurement surface must enclose a well-centered source that fulfills the require-

ment of an angular band-limitation. For playback, a set of loudspeakers provides
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the required sound field by inverse DSHT of the spherical wave spectrum. Given

Y™ (kro) in the frequency domain and setting b,,, = 0 in Eq. (47), we equate:

Y (kro) = Cnmh1(12) (kro)
Y, (kro)

Copy = D700 49
W (kro) (49)

The coefficients ¢, allow for the evaluation of the sound field at every kr > kry.

Example 2: Interior problem, free incident field. Assuming a purely inci-
dent field without scattering, the coefficients b,,, of the interior problem (regular
solution) can be determined by the spherical wave spectrum at a given surface kry.
Once again the requirement of an angular band-limitation must be fulfilled. Given
or provided ¢ (krg), we obtain the complex-valued frequency domain distribution
by setting ¢, = 0 in Eq. (47):

w;n (kTO) = bnm]n (kTO) )
_ Uy (kro)
Do = k) 0

An application of this type of problem is higher-order Ambisonics (HOA) cap-
ture. For incident field capture, compact open-sphere configurations of micro-
phone arrays identify the spectrum " (kro) by DSHT. In practice however, divi-
sions by the zeros of j,(kr) must be avoided. For HOA-playback, the spectrum
" (kro) is provided computing a discretized version of a spherical source distri-
bution Sec. [2.4] with surrounding spherical loudspeaker arrays and inverse DSHT
(“HOA-Decoder”), which does not suffer from a division by zero problem.
Alternatively, if both spherical wave spectra " (kro) as well as v (krg) are
known, the coefficients b,,,,, can be found more robustly from a linear combination,

using arbitrary scalars o and :

. ig

ap™ (kro) + Bl (kro) = bum | jn (kro) + pTﬁc g (kro) |
_— ap™ (kro) + vt (kro)
g (ko) 4+ 2 gt (ko)

poc

(51)

Something similar is achieved, for instance, when applying cardioid microphones in
compact open-sphere microphone arrays, which can circumvent divisions by zero.
In this case, as given in the work [BRO7] of Balmages and Rafaely, the coefficients
in the above equations are a = 1, and § = —pgc.

Another way to prevent divisions by zero uses spheres of different radii kr;
and a modified DSHT, which considers the frequency dependence of the radial

functions, see [Raf08].
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Example 3a: Mixed problem I, separation of radiated from incident
field, given two spherical wave spectra. This approach has been shown in
Weinreich and Arnold’s work [WAS0], by using measurements with a microphone
array arranged in concentric spheres. The spherical wave spectra of the sound pres-
sure ¢ (kry) and ¢ (kry) are given by DSHT based on discrete measurements.

From that, the coefficients b, and ¢,,, are found by elimination in Eq. (47):

Y™ (kry) = bpmgn (k1) + Camh® (kry),
Y™ (k1) = bpmgn (k72) + camh® (krs),

resulting in:

- (kr1) b (ko) — o (krs) iy (/m)’ (52)
2 (k) B (krs) = G (ko) B (k)
S Uy (kr1) gn (Kra) — ¢ (krs) jn (kr1) (53)
G (k) B2 (kra) = G (kra) B (k)

Note that this approach will not work in the case of two zeros of the spherical
Bessel functions at both kr; and kr,.

In that case, it would be better to measure the spherical wave spectrum of the
pressure and the radial particle velocity ¥ (kry) and v (kry) at the same radius

ro = r1 = 9. The coefficients b,,,,, and c,,, are similarly determined as above:
W (kro) = bmin (k70) + Camh® (kro),
i
V™ (krg) = — [brmdty (k7o) + Camhl® (kro)]

£o

yielding:
™ (kro) bt (kr)— poc m(kro)h@) (kro)

G (ko) W (k) — 1, (ko) B2 (o)
B @/)m(kro)Jn(kTo) “ vn' (kro) jn (kro)
g (ko) i (ko) — i, (ko) B (o)

Using the Wronskian Eq. (23) the equations simplify to

bnm =

bm = (kro)? [1 (ko) B (kro) — poc vl (kro) ) (kro)] (56)
Cm = —(kro)? [0 (kro) gy, (ko) — pocvyy (ko) g (kro)] - (57)

Example 3b: Mixed problem III, computation of radiated and incident
field, given a spherical wave spectrum and the radial impedance at the
same radius. In principle, there are different kinds of impedances related to
boundary conditions on spherical surfaces. In particular, we consider an acoustic

impedance and a mechanical admittance
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1. The modal/acoustic impedance of the free sound field is defined by

pocjntkro) ©ipterior problem
wm ac(k,r ) ' jn(g];m)
m,ac 0 — poc hy (ko) 1
22 (kry) = ko) W exterior problem  (58)

2 (krg),  other.

Note that this kind of impedance is not dependent on the angles but on
the indices n, m. The relation is convolutive: given a velocity distribution
on krg, the pressure tends to be spatially smoothed. Modal vibrations of

spherical membranes may also show this kind of impedance.

2. The radial mechanical impedance distribution exhibits an angular depen-
dency
P (6)
() = . 59
()= g (59)

This relation is not convolutive but directly dependent on the angles.

r=rg

In many cases it is necessary to have both impedances combined, e.g. for a vi-
brating mechanical structure coupled with the sound field. Conversion of the

mechanical impedance into spherical harmonics yields:

pe(0) = 2"(0) v,(0), (60)
/S a0 Yn’”(H)‘ D Uy (9) = Z v 2"4(0) Y, (6), (61)
Prme — Z / (O)Y7(0)do. (62)

J/

-~

m/m,me

n/n

In principle, both types of impedances interconnect via the velocity. Superposition
of the pressures due to the sound field ¢7*(kry) and due to the mechanical

structure ;™ yields the total pressure on the boundary:

Yt = v iro) + g (63)
_Z Z <mac kTo 5nn5mm+2mmme> , _Z Z zmm m
MEom=- n'=0m/=

From this, we can derive two useful equations that yield a sound pressure ¢ (kr)
due to a structural pressure distribution ot The second equation considers the

tensor-inverse of the impedance 2], i.e. the admittance v

=S S 7;7’?;‘;), (o1
n'=0m/=—-n
¢mac(kr _Zmac k’?" Z Z ,yzznm,ll)zm,tot. (65)
n'=0m/=—n
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With mechanical impedances that are spherically uniform, 2™°(6) = const, the
total impedance is z,’%”' = 2" 0pnOmm and can be expressed by adding a constant
to Eq. (58). For zero velocity boundaries (sound-hard) the impedance equals oo,
in case of a "pressure-release” sphere it becomes 0. The concept of the impedance
facilitates the computation of sound fields scattered by a spherical surface with
given impedance.

Given the impedance 2" (krg) and the spherical wave spectrum of the pressure,
the velocity can be computed with v/ (krg) = ¥ (kro) /27" (kro). Therefore, using
Egs. (56), (57), the desired coefficients equal

= (kro)? [iD (krg) — =25 5@ (ko) | ™ (g
bum = (kro) [hn (kro) = ol hs? (& >] v ko), (66)
= — 7‘02 i‘/ To _ﬂn To m To) -

This type of solution is useful, for instance, when given a rigid sphere 2 (krg) =
oo, on which the sound pressure distribution has been identified (compact rigid
spherical microphone array). It is possible to compute the incident field, compen-
sating for the reflection on the surface. Possible multiple back-scattering between

the spherical surface and distant sources or obstacles is usually neglected.

2.4 Spherical Source Distributions

In some cases involving irradiating fields, spherical boundary value problems suffer
from division by zero Eq. (50), see also Footnot(ﬁ. In holophonic problems, a
spherical source distribution can be employed to obtain a stable solution. In
contrast to spherical boundary value problems, a continuous distribution of sources
always excites the interior field without zeros as shown in this section.

Consider a continuous source strength distribution f(@) that excites the inho-
mogeneous Helmholtz equation at the radius r:
d(r —ro)

r2

(A+K2)p=— 1(0). (68)

This inhomogeneous differential equation is solved by a product ansatz, cf. [MF53]
p(kr,0) = R(kr) ©(0). (69)

The angular part ®(0) is easily described by the spherical harmonics transform
pair of f(0), cf. Eq. (28), and yields the modal source-strength [ZPF09)

o= [[ 100)Y(6) a0, (70)

f(e) = Z Z Gnm Ynm(e)a (71)

n=0 m=—n
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hence the radial solution gg(kr) of the Green’s function for one harmonic becomes
p(kr,0) = gr(kr) dpnm Y, (0). (72)

With the Laplace operator split into its radial and angular parts A = A, + Ag and

the eigenvalue eigenfunction pair of the angular part AgY™(8) = — ") ym(g),

r2

the insertion of the ansatz results in an inhomogeneous, one-dimensional spherical

Bessel differential equation

n(n+1)

[Ar R T] (i) = — 2=

r2

(73)

Since we use two independent homogeneous functions j,(kr) and h,(f)(kr) as its
solution, the inhomogeneous radial part ggr(kr) can be solved by wvariation of
parameters, cf. [Kre99, MF53]

o hg)(krr) o(r —r) dkr
. Wi(kr)  r? k "

" gn(kr) 8(r — 1) dkr
o Wi(kr) 1?2 k-
(74)

gr(kr) = —j,(kr)

wherein W (kr) is the Wronski-determinant Eq. of the two functions. Even-
tually, the complete solution of the inhomogeneous problem, the spherical source

distribution, can be given as

& hg)(k‘rl) Jn(kr), forr <,
p(k‘?”,0|gbnm) = _ikz Z Onm Ynm(e)

@ (75)
=0 m——n Jn(kry) hy ' (kr), for r > 1.

This approach is particularly useful when describing point sources, Sec.
or spherical arrangements thereof, as in higher-order Ambisonics, or other open
spherical loudspeaker arrays. Such arrangements are well-defined using the above
equation after sampling the surface function f(€). The advantage of this formu-
lation is that the sound pressure and particle velocity are explicitly not restricted
by boundary conditions (Dirichlet/Neumann) between the sampling points as the

Helmholtz equation stays homogeneous there, cf. [ZPF09].

2.4.1 Spherical Source Distribution Problem

Assume a controllable spherical source distribution with the source strength dis-
tribution f(@). The spherical wave spectrum of the upper branch of Eq. (75) is

related to the modal source-strength ¢,,, and yields the modal coefficients

e (kr) = —ik jo(kr) hED (k1) Grm, (76)
= bym = —ik B (k1)) dpm. (77)
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It is easy to see that if the latter was replaced by

h (/{Z’T’l) ~

nm — nm> 78
¢ P l)cb (78)

the interior field due to sources at any radius r < 7; can be simulated by the
sources at 7;:

k??“l) ~

Y (kr) = =ik jn(kr) WW Prums (79)

which solves the holophonic higher-order Ambisonics (HOA) reproduction prob-
lem, cf. [ZPF09.

Furthermore, if b, can be measured, e.g. using Eq. (51) or Eq. (66)), the deter-
mination of a matching source distribution at ¢,,|,, can be calculated assuming
T

i

¢nm T oy,
g kb (kry)

b (80)

This solves the holographic problem, in which sources at a given radius shall be

identified by measuring b,,,,.

2.4.2 Expansion of a Point-Source

The Green’s function of the Helmholtz equation in three dimensions is defined as

the inhomogeneous differential equation
(A+K*) G (r,r) = =6 (r —10). (81)

Its well-known solution is a point source in Cartesian coordinates [MF53]

efik”'rf'ro”

G(r,ry) = (82)

A7 |7 — 7rol|

that fulfills the radiation condition; the arguments r,7r, are commutable. Ei-
ther way, one argument specifies the point of observation and the other one the
location of the source, respectively. The Green’s function in terms of spherical
base-solutions is defined by [MF53, Wei0§]

d(r—rp)

r2

(A+ k)G (r,mo) = — 5(1-8646), (83)

The angular term on the right hand side follows from the transform Eq.

5(1—670) = Z Z Y™ () Y (). (84)

n=0 m=—n
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Due to Eq. (75), the spherical wave spectrum of the point source equals

o Jn (kr) hY (kro), forr <,
SHTnm {G (r, ’f‘o)} = —ik Yn (00) @ (85)
hy” (k) jn (kro), forr > rg,

Grr) =3 S SHT (G (r,mo)} V" (6).
n=0 m=—n
This representation is not only useful when describing the field of point sources,
but also represents an initial value for the computation of higher-order translation

operators.

Regular omnidirectional field. The imaginary part of the Green’s function

describes an omnidirectional standing wave that is regular at r = rq:

sin (k [|7 — rol|)

Gr (”“,”“0) = -

e e =G} (86)

Using Eq. (85), the shifted omnidirectional standing wave corresponds to:

SHT {Gr (r,70)} = S {—ikj, (kr) K?) (kro) Y. (6o) }
= —kjn (kr) jn (kro) Y," (60) - (87)

This describes a shifted regular field. It also represents a set of initial values for

the computation of higher-order translation operators.

2.4.3 Expansion of a Plane-Wave

An incident plane wave from the direction g, 1y is described by

» cos () sin ()
p (Tu kO) = elko’l" kO = kOO =k | sin (QOQ) sin (190) . (88)
cos (V)

The spherical wave spectrum expansion of the incident plane wave e ™ can be
obtained by using the Green’s function Eq. (85)), letting g > r, see Arfken [AW04],

Fitzpatrick [Fit02], since

li - =1 2 2 _opt 9
r(}glrﬂr ol lim /75 +r roT (89)
Zrloiglr[To+1!2ro (T‘Q—Q'PE)F'P)—... :ro—GoTrzro,
—ik||r—mro|| —ikro
= lim - S (90)
ro>r || — 7| 47ry
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So with Eq. (85) and the far-field approximation of the spherical Hankel functions

n+1,—ikrg

Eq. (350) limyy o0 hY (kro) = ikeT, the plane-wave yields

'n+ e —ikrg

drry k m m
priko) = gy 3 Z Z n (k) Y, (8) = ¥;I" ().

n=0 m=—n

Consequently, its spherical wave spectrum becomes
SHT y {p (v, o)} = 4m i jn (k1) Y™ (60) (91)

'r kO Z Z SHT {p (T kO)} Ym( )

n=0 m=—n

2.4.4 Expansion of a Line-Source

According to Morse and Feshbach [MF53], the following relation between the
solution in the two-dimensional circular cylindrical coordinates and the spherical

base-solutions holds:

SHTnm{ o (k7 sin ) (:: E:i;)} -3 iffmynm (0,7/2) Gn (kr),  (92)
SHT rim {Hﬁf’ (krsin ) (C?S (<mg0)>>} - i .menm (0, 7/2) B (kr). (93)
s (me 1

n=m

Therefore it is possible to turn a two dimensional problem (e.g. Ambisonics) into
a three dimensional spherical problem. For example a line-source in circular cylin-

drical coordinates with p = rsin(?)

e Jm (k:p) Hr(r%) (k?,OO) y P S P0,
Hy' (kp) Jm (kpo) — p = po,

is equivalent to, using Eqgs. (92)(93)(94),

aw? | g (k7) HYY (kpo) Y™ (00, 7/2), 7 < po,
T BD (kr) T (kpo) Y (00,7/2), T3> po,
(95)

SHTnm {GL (ra Po, 900)} -

however with poor convergence for r > py.

33



2.5 Acoustic Holography and Holophony with
Spherical Arrays

This section gives a brief naming convention to some important problems that are
solved by spherical boundary value problems or using spherical source distribu-
tions. Essentially, radiation (exterior problem) or irradiation (interior problem) of
sound can be captured by microphones and predicted at other locations. Or just

as well, both radiation and irradiation can be reproduced by loudspeakers.

Spherical acoustic holography means the measurement of an acoustic field
along a spherical surface for the purpose of evaluation at other radii. This can be
achieved by suitable arrangements of microphones. If properly done, the measured
part of the field will be used to compute either the spherical wave spectrum of
the exterior problem Eq. (49), or the modal source strength of a surrounding
spherical source distribution Eq. (80). Insertion into the spherical base-solutions
allows for calculation of the field at other radii. There are two types of dedicated

arrangements for capture

e surrounding spherical microphone arrays for the identification of radiation

(exterior problems)

e compact spherical microphone arrays for the identification of irradiation
(HOA recording)

Spherical acoustic holophony means the synthesis or playback of an acous-
tic field matching outside or within the spherical reproduction facility. Suitable
arrangements of loudspeakers can be used to achieve this. If properly done, the
spherical wave spectrum of an exterior problem or the modal source strength of a
surrounding spherical source distribution will be generated. There are two main

types of dedicated playback arrangements

e compact spherical loudspeaker arrays for reproduction of radiation (exterior

problem)

o surrounding spherical loudspeaker arrays for reproduction of irradiation (HOA

playback)

Chap. [4/is the key to practical implementations with discrete spherical arrays.

Partly, this concept is summarized in [Zot09].
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Chapter III

MANIPULATION OF SPHERICAL BASE
SOLUTIONS

The base solutions of the Helmholtz equation, as introduced in the previous chap-
ter Chap. 2], are capable of describing entire homogeneous incident and radiating
sound fields even if only spherical wave spectra are known on one or more surfaces.
What has not been told so far is how to transform these spherical base-solutions to
other, new coordinate origins. While this is fairly easy in Cartesian coordinates, a
transform of coordinates requires special attention using spherical base-solutions.

This chapter presents a derivation of the transform methods using the litera-
ture on the addition theorem for the scalar wave-equation. The novel contribution
in this derivation is the usage of real-valued matrices to represent the spheri-
cal harmonics. For practical reasons, full transforms (translation and rotation)
are decomposed into simple transform steps. The derivation yields the computa-
tion of each of these simple transform steps for base-solutions using either real-
or complex-valued spherical harmonics. Finally, approaches and literature about
other manipulation techniques such as correlation, multiplication, and spherical
convolution are provided. Another novel contribution for spherical convolution
is the recurrent relation between spherical and cylindrical convolution. This al-
lows to directly transform circular harmonics windows known from discrete-time

windowing-techniques to spherical convolution kernels.

3.1 Coordinate Transforms of Spherical Base
Solutions (Addition Theorem for the Scalar
Wave Equation)

In the following section, rotation and translation of the reference coordinate system

r to a new one by a 3 X 3 rotation matrix @ and an offset d is given by
r=Qr+d. (96)

Interrelations between spherical base-solutions defined on the two distinct coordi-
nate systems can be established and shall be explored here. The principle behind
this technique is the so called addition theorem for the scalar wave equation de-
scribed in Chew [Che92], Gumerov and Duraiswami [GD01, GD03, GD04]. The

35



derivations here follow strictly the outlined steps given in the references. As a
novel contribution, recurrence relations for real-valued spherical harmonics are

directly obtained, here.

Rotation of the Cartesian coordinates. A rotation @ of the Cartesian coor-
dinates can be written as 3 X 3 matrix, which is determined by the three rotational
degrees of freedom. @ is often decomposed into a rotation Q,(7y) around the z-
axis, followed by a rotation around the y-axis Q,(3), and a third rotation around
the z-axis Q,(«), cf. Fig. 9 and e.g. [GD01, GD03, GD04]. This zyz-rotation is

for Cartesian coordinates:

v = Qa,3,7) 7, (97)
Q(a, 8,7) = Q:(a) Qy(S) Q=(7), (98)
cos(a) —sin(a) 0 cos(B) 0 sin(f)
Q.(a) = | sin(a) cos(a) 0O, QuB) = 0 1 0
0 0 1 —sin(f#) 0 cos(f)

The inverse rotation is obtained by exchanging the order and signs of the angles
Qil(aa ﬁa 7) = Q(_’Ya _ﬁa —O[).

zZ

Figure 9: zyz rotation.

Translation of the Cartesian coordinates. Shifting the Cartesian coordi-
nates by an offset vector d is easily described as an addition of the 3 x 1 compo-
nents. In terms of the spherical base-solutions, translation is more complicated as
a shift of the origin affects both angular and radial coordinates. Therefore, it may
theoretically require all spherical base-solutions up to infinite order to represent a

single shifted base-solution.
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Coordinate transforms and spherical base-solutions. Basically, the spher-
ical base-solutions for either regular incident fields R™(r) or singular radiating

fields §7(r) can be given as

R} (r) = ju (kr) Y,"(6), (99)
Si(r) = hy (kr) Y,"(6), (100)

The formulations here express the complex-valued spherical harmonics in terms
of a 2 x 2 real-valued matrix Ynm (0). The underlying intention is to make the
relation to the real-valued spherical harmonics Eq. (183) more obvious while still
keeping the benefits of complex-valued calculations using the matrix notation. In
doing so, the complex-valued nature of the angular solutions will be kept strictly

separate from the complex values of the radial solutions
. cos (my) —sin (my) . m
b ()= | = (1)) . (101)
sin (my)  cos (my)
Y.(8) = N P (1) @iu(0)- (102)
The indices are defined for the range n,m € Ny : m < n. Free sound fields

(complex-valued) of either type (incident/radiating) can be entirely described as

infinite sum over the base solutions weighted with the coefficients b,,,,, and c,,,:

[t g [ »
nm — bgli;lnag) bg;%al) ) Cnm = Cgli;lnag) Cg;ial) ) ( )
(real) (imag) (real) (imag)
_ [ Pr —Pr _ [ Ps —Ps i/h? (kr)
Pr = (imag) (real) ) Ps = (imag) (real) € ) (104>
Pr Pr Pg bs

pR<T) = Z Z bum RZL<T)7 (105)

n  m=0
ps(r) = Z Z Coim ST (7). (106)

n m=0
For the coordinate transform problem, the distinct spherical base-solutions
shall be denoted more generically as F'™(r) = {an(r)|,§;”(r)} and Em(r') =
{ Bz (r)|8(r') ], as given in [GDOL, GDO3, GDO4]. This allows for freely se-
lecting the appropriate type of solution according to the situation prevailing in
the respective coordinate system. Consequently, the sound pressure in the two

different coordinate systems r and r’ equals

pr(r) = Z Z Jrm ﬁ’,:”(r), (107)

n m=0

pe(r') = ZZenm E;”(r’). (108)

n m=0
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The transform between both coordinate systems can be written as
pr(r)= [ T(r' r) pg() dr'. (109)
R3
The transform operator can be easily transformed into the spherical harmon-

ics with respect to the two different coordinate systems r and r’. Due to the

orthogonality of the base solutions in the respective coordinate systems using
i EAT’Z;I(T/)}A’;Lm(O')dO’ = 5nwn5mmeAgy(r'), the above equation reduces to

ZZT’”’”Qd E™ (r'). (110)

n/=0m’=0

The operator T7/™ (Q, d) transforms the solution E” (') into a solution
F™(r). In other words, the base solution F™(r) in the coordinate system r
can always be expressed as linear combination of base solutions E™ () in the
coordinate system ' = Q r + d using the weights Tﬁém (Q,d). Eq. (110) is there-
fore called addition theorem for the scalar wave equation. The following sections
show how the coefficients 77" (Q, d) can be determined.

3.1.1 Gradient and its Commutativity with Transforms

The V-operator (gradient) is defined as:

(111)

Flo&lo gl

Applying the chain rule to obtain the gradient in transformed coordinates yields
V, = (Vr ’r'T) V=V, (’rTQT + dT) Ve =Q"V, (112)

in Cartesian coordinates. It must be invariant to a change of the coordinate system
T (r,r")

V.p(r)= [ T(',r) Q" V.p(r) dr'. (113)
R3
Since we define the spherical base-solutions having the dimensions 2 x 2, the

gradient must be re-written to 6 x 2; we use bdiag to denote a block diagonal
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matrix:

I0/0x
V.= |109/dy (114)
I10/0z
o o [(Tm™(Q.d) 0 0
=> > 0 T7m(Q, d) 0 QL VhE (),
e 0 0 TrMQ.d)
V. E" (r) = Z Z bdiag {Tﬁ@m(Q’d)} QL. V. E™ (+). (115)
n'=0m’=0

As shown later in Eq. (149), the gradient of the spherical base-solutions equals a
linear combination of two or more spherical base-solutions in the same coordinate
system. The introduction of alternative orthonormal coordinates » Eq. (124)

instead of r simplifies the expressions to yield

Z Z G (), (116)

n'=0m/=—n

g(m),m my

n'n
!

| g@mmp | (117)

nmn n'n
G "I

Coordinate transform and gradient must be commutative. A spherical
base-function in one coordinate system is equivalent to a linear combination of
the spherical base-functions in another coordinate system, using the coefficients
T,ZL,;"(Q, d). Not all the coefficients are easy to compute, however some are analyti-
cally known. As will be shown below, the gradient also equals a linear combination
of base solutions with coefficients C:’Z?;Lm that are well-defined. In general, the gra-
dient in a shifted coordinate system must lead to the same result as the gradient
in the original coordinate system, evaluated at the shifted points. Therefore both
operations must be commutative. The commutative law between the two matrix-
type operations is used to obtain interrelations between elements of the transform
operator T7'™(Q, d), cf. [Che92, GDO1, GD03, GD04].

Generally, there must be equivalence between the gradient in different coor-

dinate systems. Starting from the addition theorem Eq. and inserting the
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gradient Eq. (116) on both sides as well as the addition theorem on the left yields:

Vo Er#) = 3 bdiag {T;T;m} QL. Vi E™M(#) (118)

ni,mi
E msm m3 ~ E E Fmin T momi1 ms (4!
Gn3n F 'l° bdlag {Tnln } Q6><6 Gngnl Eng ( )
n3,ms ni,mi n2,ma2
E : § m3m Aamams m4 AI § : § : Sman T momi tvms [ a/
Gngn Tn4n3 E bdlag {Tnln } Q6><6 Gngnl E ( )
n3,m3 n4,mq ni,mi nz,m2

Exploiting the orthonormality of the spherical base-functions Em'( ) within the
same reference frame 7' using [ E7 (#/ VY(0')dO' = by Oy E™(#') yields:

> G By () = Y bdiag (T} QL Gt B (), (119)

n3,ms ni,mi
> G = 3 vdiag { T Qi G (120)
n2,ma2 ni,mi

Since G'Z?;f is very sparse, the last equation yields simple recurrence relations be-
tween the entries in the transform matrix 77" (Q, d). These recurrence relations
provide computational means to derive higher-order transform relations from the

known ones (spherical harmonics addition theorem, Green’s functions).

3.1.2 Deriving the Gradient on Spherical Base-Solutions

Expressing the gradient as combination of base functions. The conver-
sion between Cartesian and spherical coordinates is important for the derivation
of the gradient (u = cos(9)):

kr ky/2? + y? + 22

r=|¢p|= arctan (y/x) . (121)
1 z/r
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In preparation to define the gradient with respect to the spherical coordinates 7,
the partial derivatives for the chain rule using Eq. (121) equal

1
EVT =V, 7?' Vs

Okr/0x 0p/0x Ou/dx 0/0kr
= | 0kr/0y 0p/0y Ou/dy 0/0¢ (122)
Okr/0z 0p/0z Ou/oz /0

cos () /1= 42 =208 —fcos (D) VI=12\ 150,
= |sin(@) VI—p? SHEs —fsin(e) /14 || 0/0p
1—p? /0
. 0 1—p? 0 —/ 1= p? 0
@1 (p) 1 ’ ok
= 0 0 0 0
kra/1—p2 Op
e 0
00 1 K 0 e o

We observe that a rotation matrix él(ap), i.e. the first degree azimuth solution, is
part of the partial derivatives. Since the rotation structurally relates the deriva-
tives with respect to x and y it cannot usefully yield an application of the addition
theorem, cf. Eq. (101)). In the next paragraph, the usual modification of the coor-
dinate system [Che92, GDO01, GD03, GD04] is introduced that allows us to employ

this theorem.

A new coordinate system incorporating the trigonometric addition the-
orem. In terms of the azimuthal solutions, the following redefinition of the co-
ordinates is beneficial (note that the matrix L represents the imaginary constant
i = /=1 in real-valued matrix notation, and the factor 1/ V2 provides normaliza-

tion 17 = r?I):

10 0 —1
I= , L= , LL=-I (123)
01 10

1
ol —yL|, =9 (124)

B
8
~
+
<
h

<

Il
<

Il

N
N

b~
5
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Qex’ Qya' Qza’ dx
For a coordinate transform ' = Qr+d withQ = | ¢,y ¢ ¢y |, d= 14, |,

ez Qyz Gzz q-
the following redefinitions are necessary:
X ) ) 1 d. I + dyL X Qi Quzr Qszav
7= Q 7+ d7 d= E do I — dyL ) Q = Q:f:'g' Q'Q'Q' Qi’g’ ) (125)
d.I/?2 Qs Qyr Qzy
R 1 (qg::v’ + ny’>I - <Qym/ - me’)L (qg::v’ - ny/)I + <Qym/ + qg:y/)L \/5 (q,zm/I + q,zy’L>
Q = 5 (qxx’ - ny’)I - (anr’ + QJﬁy’)L (qgcx’ + ny’)I + (anr’ - Qxy’)L \/§ (QZx’I - sz’L)

\/5 (sz’I - Qyz’L) \/§ (sz’I + Qyz’L) QQZZ’I

Gradient in the new coordinate system. The redefined gradient and the

chain rule yield

(I0/0x + LO/0y)/V/?2 Vs
Vi= |(I0/0x — LO)dy)/V2| = | V4|, V&t = Ises. (126)
Vf,“« - V,;; ’f', T V,,z/ == QT V,;:/. (127)

It becomes clear in the next equations that, within the new coordinate system,
the rotation matrix ®,,(¢) in Eq. (122) increments/decrements the degrees of
the azimuth harmonics. In addition, another useful property will be taken into
account by expanding I0/0p = —L L 0/0¢p:

0 -

md,, (p)=—-L %Cﬁm (). (128)

With the partial derivatives in Eq. (122)), the operators %V;j‘;, %V@, and %Vﬁ yield

1 1 I0/0kr
Vo= (Vakr, LVay, Vap)|-Lojog|. (129)
I0/0u
1 A 0 0 0
= 0 1— I k———+L—},
kry/1 — p2/2 (%) [( ) < " Okr M(’?u) 0p
1 1ot 1 9 0 0 0| sr
—Vy;=-V;= 1— N | kr— —p— | —L—| ®
k:Vy ka kr /1_M2\/§{( ) <r8k3r M@,u 9o 1 (9),
(130)
1 0 1—pu?o0
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As given in [GDO01, GDO03], the above operators are simplified by using recurrence
relations of the spherical base-solutions involving the derivatives.
Inserting f,(kr) P (u) for the gradient in 2

0 0 nk 2 d m
%afn(kr)]?jf(u) = (1B (1) 5T (er%u — g B

the following recurrence relations are used

REP () = o + M D (132)
(i) = O - MU D pn ) 1)
LD _ g k) = 5 fulhr) (134)
MIRE) )+ k), (135)

and it remains
L R P () = |5 g (P () — P ) B )
EV F(7) = —]\]]\fn m((T;Zf?)F,T L (7) - N]\% (_2::1)1)1?& (7). (136)

Note that for n = 0 the expression F, (#) vanishes.
Additionally, the operators ¢ 1vs and %V = %V}; are simplified by recurrence

relations given in [GDO1, GDO3]

0 1 0 1 0
=21 -~ (/i er s - —— 1 2.
W okr ~ & ( H o on V1 — 2 3@)]

Utilizing the addition theorem of sine and cosine, as well as the recurrence relations
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of the Legendre polynomials [GDO01, GD03] and the radial functions (134),(135)

D001 () = D1(0) 1 (), (137)
&1 () = BT (0) @i (9), (138)
1 1
/1 o Pm _ Pm+1 o Pm+1
IU/ n_'_ 1 n—1 (lu) 2”"‘ 1 n+1 <IU/>7
(139)
m n—-m+1l)(n-m+2)
V=R = S 2
(n+m—Dnt+m) .
2n+ 1 )Pn-f—ll(lj’)?
(140)
0 m n+1 .
/1= 1P () — ——e P (1) = +- —pmi(u)+  (correction
Op V1-p? 2n+1 1.9.2010,
n m Zotter
(141)
0 m m+D(n+m—-1)n+m) _,
_ 1 _ Q_Pm 7Pm —_ _ Pm 1 _
V=g B )+ o n (1) Sy 1 (1)
nn—m+1)(n-—m+2)
2n+ 1 )Pn-i-ll(lj’)?
(142)
the equations remain
V2 . .
——VzF"(?) = ®,, .
g VAFL ) = B
1 m+1 1 m+1
V2 O & (n+m—1)(n+m) -
LGB ) = yalp) - | i)
m—m+1n—m+2)
- 2n+ 1 Pn+11< )fn‘f’l(k,r) N
These are for fully normalized base solutions:
V2 - N R N R
VLT ()= ——— m+1(4 . "n  pmtlia 143
k’ n (T) Nm+1(2n+ 1) n—1 (7‘) + Nﬁ_ﬁl(Qn‘l“ 1) n+1 (7‘)7 ( )
2 = N —1 - N™(n — 1)(n — -
k N (2n+ 1) N (2n+ 1)

(144)

The constants involved can be gathered into new expressions, such as given in [GDO1,

44


pomberger
Linien

pomberger
Linien

pomberger
Textfeld
                n

pomberger
Textfeld
           n+1

pomberger
Textfeld
(correction 
 1.9.2010,
 Zotter)


GD03, GD04|

(n—|m|+1)(n+|m|+1) _
o \/ Gunents) o+ fornz0and —n<m<n (145)
0, else.
(n—m—1)(n—m)
Tty form>0and 0 <m<n
=< — %, forn>0and —n<m <0 (146)
0, else.

In order to simplify, we use the constants and Kronecker deltas to re-write the

theorems representing the gradient with its components:

LVENR) =Y S GurEy(#), (147)
n'=0m/=—n’
oLl AR N i
= | I | e o (148)
I [a?—l 5:?:;;?1 —ay 577:;:11]
S |V S v S
= | I |-b e v o ] (149)

] m' sm',m m/ m/,m
I |:an’ 5n’+1,n_an’fl n'—1,n

Eq. (149) can be described in two ways, depending on which pair of indices (either
n,m, or n/,m’) is used as summation variable, see right hand side of Eq. (151). A

complete recurrence scheme is given in the following section.
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3.1.3 General Recurrence Relations for Coordinate Transforms

The approach to obtain interrelations between the transform coefficients in 7™ (Q, d)
was plotted in Eq. . With the modified Vz-operator, this becomes

> Gt Q.d) = Y diag {Tm(@Q.d)} QT G, (150)
n2,ma2 nimai
according to the definitions of the rotation matrix Q from Eq. (125), and éﬁ'nm
from Eq. (149). In particular, the complete relation yields

mAm’ m+1 —m—1 Aam/ ,m+1
_bn Tn/,n—l + bn+1 Tn’,n+1

A / A /
—mrm’ ,m—1 m—1 rpm’,;m—1 —
—bym T T =

1 n+1l +n/ n+1
1 (.m gmm _gqogmm
\/i(an—lTn’,nfl Ay, Tn’,nJrl)

[ '—1 pm/—1,m —m! A/ —1m]| AT —m/—1 Apm/+1,m "’ +1m | AT
—pm' -l +0," T )" | Qe + |04 T, + by T, a2y

n’+1 “n/+1,n iz n/+1 n’+1,n n’—1,n

[ w1 &m/—1,m —m/ "m’—l,m- AT —m/—1 Apm/+1,m m! ' +1m | AT
_bn/+1 Tn/Jan + bn/ Tn/fl,n ’Qif}l + _bn/+1 Tn/+17n + bn/ Tn/an ,gg/+

[ -1 ~m!—1,m —m/ "m’fl,m- AT —m/—1 pm/+1,m m! ' +1lm| AT
_bn’-l—l Tn’-l—l,n _'_bn’ Tn’—l,n 25}’+ _bn’—l—l Tn’—i—l,n _'_bn’ Tn’—l,n 2@’+

n n'—1n
L m’ m/7m m’ Am/7m ~
+ V2 Ayt Tn’+1 n— Qpi_1 n'—1,n Q%i’

This equation describes recurrence relation for Tﬁ;m(Q, ci) that only depend
on the modified rotation matrix Q. From the above equation, the full set of
coefficients for the translation operator can be computed by knowing some initial
values for T,ZL,;’”(Q, ci) Note, however, that these recurrence relations have to be
customized in order to deliver applicable expressions for calculation. Furthermore,
it is an important task to provide sufficient coefficients for initialization. It is most
appropriate to reduce the complexity of the above equations by decomposition of

the transforms into simple components.

3.1.4 Decomposition of General Transforms into Simpler Steps

Without loss of generality, full coordinate transforms with a matrix @ and a vec-
tor d can be decomposed into smaller steps. It is easy to think about T,%’”(Q, d)
as being separately a rotation and a translation, i.e. TT%’”(Q, 0) and T,;’?T'Lm(I ,d),
respectively. The pure rotation operation is also known as the Wigner-D func-

tion [KR03, KROS].

IThe recurrence relations given in Gumerov and Duraiswami [GD01, GD03,/GD04] have a
different sign on the right hand side, the reason of which was not found, and its influence is

unclear. However recurrence relations based on Eq. (177) were successfully tested.
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However, it even makes sense to further split these parts up into simpler sub-

transforms.

Decomposition of rotation into z-y5---y5-2. In terms of arbitrary rotation,
it is useful to exploit the properties of the rotations around the z-axis since this
operation is very efficient. Therefore it is useful to split up the three rotations
into a zyz-rotation. Even further, it makes sense to perform the more complicated
part, the y-rotation, at a fixed angle 7/2 only and represent the variable part in
terms of a z-rotation cf. Fig. [10] see also [PHO7b]. Hereby, rotation is efficiently

split up into a z-y7 --yJ-z-rotation
r=Q(a,3,7) 7 (152)
= Qz(a) Qy(ﬁ) Qz(f}/) r
= gz(a + 7T/2) Qy% Qz(ﬁ + 77) Qy% Qz(fy + 77-/22 r.

Figure 10: /-rotation represented in terms of a z-y35---y5-2 rotation containing only
constant rotations around y.

Decomposition of translations into z-displacement and rotations. Trans-
lation is also efficient when regarding only one direction of translation, in particular
the translation towards the positive z-axis, cf. [GD01, GD03, GD04]. Rotational
transform of the coordinate system into a suitable coordinate system helps to

obtain any arbitrary d by using translation towards z d,

0
d = Q(v4,74,0) d. = Q(va,94,0) |o|lld]l. (153)

1
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With the inverse rotation Q(¢g4,74,0)™" = Q(0, =94, —pq), this representation

reads as
r=r+d (154)
= Q(Oa _ﬁda _de) Q(dea Q9d7 0) T+ dz .
Fully decomposed transform. A full transform with d and @Q in terms of

the more efficiently evaluated parts Q,z, Q.(:), and d, could be symbolically

described as
rr=Qr+d (155)

= Qz—y%—z—y%—z(ou —¥d; _ﬁd) Qz-y%-z-y%—z(‘pda ﬂdu O) Qz—y%—z—y%—z(a7 ﬁa 7) T+ dz .

-~

Qz-y%-z-y%-z(alvﬁl7’yl)

If the two rotations in the brackets are represented as a single rotation, this trans-
form can be reduced to 2 rotations with 5 variable and 1 fixed angles around z, 4

fixed angles around y, plus the translation along z.

Known simple transform relations. Mirror symmetry with respect to y

1 0 0
me = 0 -1 0 5 }]nm(e) = }fn_m(me 0)7
0 0 1
= T (Qmy) = 0" (156)
Rotation around z by 90°
0 0 0 _1\"
Q:z=1-10 0, f/nm(e) = (1 O) Yn’”’b(QZ5 0),
0 1
, 0o -1\ .
=T (Q.x) = op . 157
@)= (1 ) (157)

-1 0 O
me = Q;%l me ng - 0 10 5 }"/nm(e) - (_l)inm(Qma: 0)7
0 01
= T (Qua) = (=)™ 30" (158)
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Mirror symmetry with respect to z

1 0 O
Qu-=101 0 |, Y, (0) = (—1)"Y,"(Qn. 0),
00 —1
= T (Qus) = (—1)" ™, (159)

3.1.5 Recurrence Relations for Translation in z Direction

For translation towards z, all entries in the rotation matrix except for Qm/ =
Agg' = Q%, = I are zero. Therefore, this translation can be written as the
complex scalar T77"(d.,).

A translation into z-direction only, i.e., a shift along the rotation axis, must
preserve orthogonality in azimuth. Therefore the base solutions in azimuth remain
orthogonal, and there is no way for a solution of index m’ to be made dependent to
m in the shifted reference frame other than m’ = m. Consequently, the operator

reduces to a diagonal form wrt. m and m’

Tr%zm(dZ) = O’ Tr%zm(dZ) (160)
B (@) =Y T (da) B (7).
n’=0

Since mirroring the y-axis before and after the transform does not affect the trans-

lation along z, we also get

TTTLCL:LYL(dz) — gm2—m Tml,mz (dz) 5m’,fm1 _ Tr;;n’,fm@lz). (161)

nan ning n’'ni

Furthermore, mirroring the z-axis before and after translation yields the inverse
operation. Exploiting the symmetry and orthogonality of the unitary transform

operation reveals

T (—d.) = (1) T (d.) (—1)" ™,
S Tmm(—d.) Tor(ds) = G, = Ty(ds) = (=)™ T (d.).  (162)

Hence, evaluation of T[Z}}”(dz) by recurrence relations is only required for 0 < m
and 0 < n’ < n while other values are defined by Eqs. (161) :
The recurrence relations in the first and third line of Eq. form’ =m+1

and m’' = m remain :

r m rmm —m—1pmm mrm+1,m+1
(Tﬂ;ﬂnﬂ(dz)) _ b;f% [_bn/+1Tn'+1,n<dz) b, (d) + b T (dz)}

T (d:) o [T () + T (d) + ap T (d)|
(163)
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Note that the start values for 77" (d,) are known. It is important to know that
both recurrence relations must be evaluated at n’ = 0 for n > 1 at the start of
the recurrence, at which the expression T,  (d.) vanishes. The second relation

allows progression in n, and the first relation progresses in m.

Initial values for z-displacement. The Green’s function located at the origin

r = 0 correspond to zero-order base functions

—ik [ 1 e —ik
G<T) - E E —kr - \/E SO<T)7 (164>

— sin(kr’) -k 5
,/ — 1
Gpg(7) \/E P — i R( ). (165)

The coordinate transform for translation is expressed by r = r + d without
rotation Q = I. Referring to Eqs. (85))(87) in Sec.[2.4.2, the representation of the

Green’s functions at the coordinates d expresses a basic form of translation and

yield a scalar value:

i "Z —ik 8 (d) R ('), for v’ < d,
w—omi—m | —ik R (d) 87 (v'), for ' > d,

Z Z d) R™ (r').
n'=0m’'=

Note that for m = 0, only the cosine component is non-zero, i.e. stays scalar-

valued. As a consequence of

VAT
—ik

G(r), and Ry(r) = {EJGR(T),

So(r) =

the coefficients T mm(d,) for displacements in z can be directly read from the above

equations using n =m = 0:

WP (kd,), for 8%(r) — RO, (r'),

T (d.) I =20 +1 50
0 ju(kd), for ° ’

0

0

3.1.6 Rotation Around z-Axis

In general, a rotation is always defined for a common n = n’. This can easily be
seen by considering the orthogonality of the radial propagation terms regarding
the complete base solutions. The radial propagation terms depend on the order n

only, hence

A

T7"(Q) = T (Q) Surn. (167)
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The (azimuthal) rotation around the z-axis is easily described using the properties
of the azimuthal solutions directly. In particular, these are the addition theorems

of the sine and cosine:

A

D,,(¢ — 1) = ®_n(01) Brn(¢). (168)

Defining ¢ = ¢’ — 1 and considering ; as rotation angle, this is a transform

®,.(0) = ®_,.(01)®Pn(¢'). The corresponding Cartesian coordinate transform

equals
r=Q.(p1) T, (169)
cos(p1) —sin(py) 0
Q.(p1) = | sin(py) cos(py) 0. (170)
0 0 1

It is obvious that the transform rule T (Q. (1)) is described as

Using the addition theorem for ®,,(¢1) = (@1@01)) allows efficient computation.

The transform relation yields
E7(P) = @4 (¢1) FT (7). (172)

3.1.7 Recurrence Relation for 7/2-Rotation Around y

A rotation around y by /2 is defined as

00 -1 (T —V2I
Q=01 o0 :»Q:§ -1 I —a2r|. (173)
10 0 VI V2I 0

It can be seen from the recurrence relation and its initialization (see later) that
this operator yields a real-valued scalar (i.e. the Wigner-d functions evaluated
at m/2, cf. [KRO3, KRO8]), hence the thin letter T}7™(Q,x) is sufficient for its
description. It also has the following properties together with its inverse, which

rotates by —m/2:

Tm'm(Qy%) = (=)™ (Qy7) Ty
Z T (Qus) To™ (Qyz) = Sprm == Tt (Qyz) = (—1)™ ™ T™(Qyz).
(175)
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Furthermore, the following interesting symmetry holds, which facilitates conver-

sion to real-valued notation later

Y(Qyz 0) = V" (QrQyz Q- 6), (176)
To™(Qyz) = Y (—1)"em ™ T (Qyz ) (—1) g™

— (_1>n+m+m Tn_nm ,m(Qy%)

Therefore, only 0 < m’ < m needs to be evaluated while the other values
are found due to symmetry. As there may only be coefficients combining the

harmonics at the same order T77™8,,,, for n = n’ + 1, the recurrence relation in
the first line of Eq. (151) reduces to

m m 1 m’'—1 qm/—1,m —m/—1 m/+1,m m’ m
T 1n+11<Qy )_— b, 1Tnn b (ng)—bn 1Tnn+17 (Q )+2CL T (Qy%>]

by
(177)
Initial values of 7/2-rotation around y. Axially symmetric spherical har-
monics distributions are most easily expressed when the rotation axis coincides
with the z-axis. Such distributions have non-zero coefficients for m = 0 only. If
the axial symmetry of a distribution is given rotated to any arbitrary axis, the ad-

dition theorem can be utilized to describe the equivalence to a distribution aligned

with the z-axis:

P(OTOYI = Y, (6)) ¥ (0). (178)

This corresponds to

Y (x, arccos(010)) = 4/ 2n 1 Z ™ (6,) Y™ ("), (179)

Note that the equation contains several angular differences

arccos(076') =9, — V', and ®F,(¢1) B, (@) = cos(m(e’ — ¢1)),  (180)

and there is no dependency on y since m = 0. We may regard the angles ¢; and
Y1 as the orientation of the Z'-axis, i.e. 6. Re-defining (y,?) to 6, this is simply
Y2(0) = o +1 S ™ (@,) Y™ (0'). Consequently, the initial values of

the rotation operator T[Z;m(ng) are
T (0 ,/ NI™T Pl 0) 1. 181
o 2n + 1 (0.7/2) 2n +1 (181)
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3.1.8 Transform Relations for Spherical Base Solutions with Real-
Valued Spherical Harmonics

Using the Euler identity and again L representing the imaginary constant i =

v/ —1, the normalized real-valued base solutions

o (#) = (? *}:Eg) (182)

can be easily related to their complex-valued counterpart F(7)

- 1

) = —Z5— 5 [
F™(7#) = /2 — 6, E™(#) <1> :

I F(7)+ L F)'(7)] (183)

,C

The evaluation of the transform expressions for z-translation, z-rotation, and y7
rotation are well-described by the recurrence relations for the complex-valued case.

Real-valued expressions directly follow from these relations.

Real-valued transform for z-translation. The z-translation transform pre-
serves the orthogonality between azimuth solutions 9,,,,» and the same re-normalization
of real-valued solutions is required on both sides. So this transform is equal to the

complex-valued case:

F'(7) = Z T (d,) Ep(#), (184)
n’/=0
Trm(d,) = T (d,). (185)

Therefore, the initialization and recurrence relations for real-valued z-translation
remain unchanged

WP (kd,), for SY(r) — RO, (1),

Too(d.) I = Von' +1 SS(r) — 8%(r"), .
Jn(kd,), for
R{(r) — R(r).
<T57,21T“<d)> (e PO T () 0T (d) + T T ()]
T (d:) L [—am T (d) + an T (ds) + an T (d)]

n’,n+1 n/;n—1

m
Ap,

T (d) = (=1 T (dy).

Note, again, that for n = 0 the n — 1 terms on the right hand side vanish, and

that the initialization has to be carried out for n up to n = 2N first.
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Real-valued transform for z-rotation. Conveniently, the rotation around the
z-axis works exactly the same way for real-valued spherical harmonics as it does

for complex-valued spherical harmonics in real-valued matrix notation

Y"(6) = &, (p1) Y,"(0).

Real-valued transform for y7 rotation. For a rotation by 90° around y, the
transform differs from the complex-valued case in real-valued matrix representa-

tion. The following holds, cf. Eqs. (183)(176)

n/

TY0)+LYN0)] = 3 T™(@,s) %78 (156)

m/=—n

~ 1

Y0 =

= 3 B [ Q) W (0) + T (@) ¥ (0]

m/=0
= Z 7”2;5 |:I (1 + ( 1)n+m+m’> Tg}z’m(Qy%)Ynﬁ’(el)+
m/=0

D (1= (1) Qe V8.

Consequently, the equation for the real-valued solutions reads as

Z dlag{ Ot m“”}m’m(czygmm’(e'), (187)

(n+m+m’/+1 mod 2)

T ™Qyz) = V2 = 0w /2 — 6 Tt ™(Qyz). (188)

Re-written into real-valued notation, initialization of T[Z};m (Qy%) needs to be
done for 0 < m’ < 2N using Eq. (189), the recurrence relation for N > n > 2,
0 <m < min{n —2,2N —n}, and m +1 < m’ < n using Eq. (190), and the
symmetry Eq. yields coefficients for m’ +1 < m < n:

/ 4 / /
T (Qug) = \/ 57 N B 0), (189)
2—-0 b ! :
mm —m+1{ 2 — Oy {"7Tm “bm(Qyx 190
n—1,n— 1(Qy2) 2bm\/ﬁ \/m nn (ng) ( )
b—m/—l

__n m+1m(Qy ):| +2a Tm m(ng)}’

2 — 5m’+1
T (Qyz) = ()™ T (Qy). (191)

54



3.2 Coordinate Transform Recipes

With the given recurrence schemes, a full transform of coordinates » = Qr' + d

is decomposed into the following steps, symbolically
E(r) =T(Q:) T(d.) T(Q1) F(r'), (192)

with d, representing translation into the z-axis and @ rotations of the coordinate
system. Rotation itself is further decomposed into fixed rotations around y and

variable rotations around z

T(Q) = T(Q.) To,; T(Q-) To,; T(Q.). (193)

The calculation of the T'(d.) matrices is depicted in Fig. 11 and makes use of
Egs. (166), (163), (162).

Rotation around z is described in Eq. (172).

Fig. 12/ shows the scheme to compute coefficients Tq,; using Egs. (189), (190)),

191), and how they apply to sine- and cosine-dependent spherical harmonics,

cf. Eq. (187).

2 recurrence 3 recurrence

m=0 |
TO,O (dz)

n'n

m=1 1

TLl (dz)

n'n

Figure 11: Scheme for computation of the 77"(d) transform coefficients for N = 3
using the initialization Eq. , recurrence Eq. , and symmetry Eq.
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2 recurrence 3 symetry

Figure 12: Scheme for computation of the T,%,m(Qyz) transform coefficients for N =
3 using the initialization Eq. (189), recurrence Eq. (190), symmetry Eq. (191), and
exclusive application to sine or cosine Eq. (187).
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3.3 Other Manipulations of Spherical Base So-
lutions

Aside from coordinate transforms, many other ways of manipulating the spherical
base-solutions are interesting in terms of sound-radiation. Above all, rotational
matching and the manipulation of angular data is interesting for sound-radiation

analysis and synthesis.

3.3.1 Spherical Correlation

Rotational matching of angular data is the key to similarity detection of radiation
data on the sphere. However, the result of spherical correlation is not defined on
the sphere S? anymore, but on SO(3), a hyperspherical space with 3 angles, i.e.
the 3 rotational degrees of freedom. Spherical correlation c(a, 3,~) takes one of
both input functions g(0), a(@), rotates it by the 3 variable rotation angles, and
integrates it over the other function, see [DH94]| and [KRO§|

(e B,y) = / 9(8) a(Q " (cv, 5, ) 6) do, (194)
SQ
=33 G Y Ty -Bma) [ VO) v 6) do,
n,m n/,m’ m!''=—n' \SQ v
_5m7:;5nn”

—Z Z Z Gnm Qe T3 ( v, =B, —a).

n=0 m=—nm/=—n

Rotational matching can be done by finding three rotation angles («, 3,v) that

maximize c(«, 3,7).

3.3.2 Spherical Convolution
(and its Relation to Circular Convolution)

Filtering operations of angular data on the sphere are performed using spherical
convolution. The output must yield a result that is defined on the S%-sphere in
order to work. One of the input functions of this operation, a(@), serves as a
convolution kernel. The convolution operation integrates the inversely rotated
function a(@) over the input function g(@) evaluated at the rotated z-axis unit
vector, with both rotations using all 3 rotation angles of the integration variable.
Due to its definition, the spherical harmonics coefficients of the kernel with m # 0

are omitted as they yield zero after integration around «. According Driscoll and
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Healy [DH94], the definition of spherical convolution is

0
«(8) = / 9(Q(.5.7) |o]) a(@ (. 5.7) 8) dadB dn. (195)
50(3) )

=Y Gt [ V@AY (@ 0,5.9) O)dadidy

" Js0() )

08 Y (6)
© n
= Z Z Gnm Ano Y, (6).

n=0 m=—n
Note that also the truncation of the spherical harmonics to a maximum order n <
N can also be understood in terms of convolution. Such a truncation corresponds
to an angular band limitation, i.e., a limitation of the resolution by convolution.

In order to characterize the properties of a given convolution integral, it is

sufficient to regard the spectral convolution kernel a, that can be expanded to
the angular space by a series of Legendre-polynomials P, (cos(¢)). To observe and
modify the shape of a, in the angular space, the equivalence between Legendre
and Chebyshev polynomials is practical. In particular, Chebyshev polynomials (of
the first kind) are the even-symmetric circular harmonics, i.e. cosine harmonics.
As convolution in circular harmonics is better understood by most engineers, it is

convenient to find the equivalent expression of the kernel in this domain.

Relation between Legendre and Chebyshev polynomials. The Legendre
polynomials P,(u) and the Chebyshev polynomials T, (u) of the first kind follow

the recurrence relations:

Py(p) =1 (196)
Py(p) = p (197)
P =" p ) - " P, VaeNon>3  (198)
Ty () = 1 (199)
Ty (1) = p (200)
T (1) =201 Ty (1) = Tz (n)  Vm € No:m > 3. (201)
The Chebyshev polynomials are even-symmetric circular harmonics:
T (cos (o)) = cos(ma). (202)

Therefore using p = cos (), the expansion into Chebyshev polynomials is a cosine
transform, i.e. the Chebyshev transform. Both the Legendre and Chebyshev poly-

nomials are orthogonal polynomials in the range —1 <y < 1. As all polynomials
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only contain powers ¥ up to k < n or k < m, the two representations must be
equivalent. This equivalence can be easily expressed in matrix notation with the
polynomial coefficients t,, ;, and p, x weighted by the powers y* and the expansion

coefficients ¢;[m] and ¢,[n]. We equate both representations

|
(uo, whoopd, ) Pcp:(uo, put, ol ) T c (203)

poo, 0, D20, 0, pao ... too, 0, tao, 0, a0
07 pl,lu 07 p3,17 07 s 07 t1,17 07 t3,17 07
E, O, p272, 0, p472 Ce , O, t2’2, 0, t4’2
pP=1 . T = | . .
5 5 07 p3,37 07 o e 5 5 07 t3,37 07
E, , , 0, P44, ... , , , 0, t474,
(204)

The conversion follows by inversion after omitting the powers of 1 in Eq. (203

Tc,=P P 'T ¢, (205)
S——
=W
c, =W c. (206)

Instead of computing the polynomial coefficients and matrix inversion, the con-

version can be defined in terms of the recurrence relations:

<1—u%§fzww=%%{%3ua4m>—RHAML (207)
(=@ Tl = Toea) = s (208

The transform relation W, must also hold after taking the derivative:

> W Pa (1) = Ton (), (209)
;wm%aw:%nw» (210)

Insertion of the recurrence relations divided by (1 — u?) yields:

1)[

Z Wn 'm 2 /+ 1 [Tm—l(:u) - Tm-H(M)] ) (211)

Paa(p) = Pua ()] = 5

The remaining Chebyshev polynomials are expanded into Legendre polynomials:

(n+1 m
Z Warm, o' + 1) [Pr—1(p) = Py (p)] = 9 Z (Wt 1P (1) = W g1 P ()] -

(212)
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Exploiting the orthogonality relation f_ll Py (1) Py(p)dp = adpry, this results after

division by the scale factor a:

(n+1)(n+2) n(n —1) m
n+lm — 7Wn—1,m =
2n+3 2n—1 2

Whm—1 — Wam+1] - (213)

We know the start values Wyo = Wy = 1 and Wiy = Wy, = 0. In order to apply

the recurrence, it is useful to set m =n + 21l — 1 with [ € INy:

o 2 (n+1)(n+2) n(n—1)
Winto = s | = 2nas Watin+2-1 + 57 Waotnt2-1| + Wania2

(214)

as expressions in this relation vanish at given indices, i.e. W, = 0 for n > m,
m < 0,n<0,or mod (n,2)# mod (m,?2).

The derivation of the inverse transform W, yields equivalent solutions, using
WO():WH:L Wm:WOl:O,m:n+2l—1,andWmn:0form>n,n<O,
m < 0,or mod (m,2) # mod (n,?2):

T 2(m+20)—1 T T T
Winmtar = m (m —D)Wp—tmioi—1 — (m + 1)Wm+1,m+2l—1] + Whnm+21—2-

(215)

Conversion between Legendre / Chebyshev coefficients. The above rela-
tions are especially useful since the properties of the symmetric window functions
well-known from signal processing [OSB99] can be directly exploited to describe

the spatial characteristics of spherical filters and vice versa:
M N
P = Z W ¢ W = Z W P, (216)
m=0 n=0

using the recurrences Eq. (214) and Eq. (215) that are illustrated in Fig.[13. For
spherical filters see also [Dan01, p. 184, 186][Boy00, p. 421].

Fig.[14 shows known window functions in their Legendre-representation. Fig.[15
illustrates what happens when directly using the window functions as spherical fil-
ters without conversion. Note that the orthonormalization has to be taken care

of separately; it is excluded from the above equations.

Angular resolution of N-truncated spherical harmonics (and circular
harmonics). The maximum resolution of the spherical harmonics can be ex-
pressed in terms of a rotationally symmetric, band-limited beam. This is quite
similar to the description in Rafaely [Raf04] and Poletti [Pol05], but explicit ap-
proximations for different definitions of the resolution are given here for the orders
of truncation 2 < N < 15. Its transform coefficients 7, can be found by trans-

forming g(p) = 6(1 — ), a beam pointing towards g = cos(¥}) = 1, into spherical
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2 recurrence

Figure 13: Recurrences for conversion between Legendre and Chebyshev coefficients,

according to Eq. (214), and Eq. (215).
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(a) Nrmlzd. Chebyshev coeffs. (b) Nrmlzd. Legendre coeffs.  (c) Beam characteristics.

Figure 14: For the manipulation of spherical beam characteristics (main/side lobes),
conversion of known window functions from the domain of Chebyshev polynomials into
the Legendre polynomial domain is helpful. a) shows the series of normalized Cheby-
shev coefficients, b) the normalized Legendre coefficients, and c) the resulting beam
characteristics.

harmonics. Its expansion truncated to n < N and normalized to 1 corresponds to
= 27T/ N, P,( — p)dp = 2+/(2n + 1), (217)

N
2n+1
Gopn(c03()) = (N i Z%N Paeos) = 32 (5 s leosti). 219
The main lobe width can be referred to as the —3dB, —6dB or —oodB width of
this function. Fig.[16 and Table 1/shows the spherical beam width compared with
an even symmetric circular beam width (or DTFT main lobe):

1 N sin [(N 4 0.5) ¢]

Geirc(cOs(p)) = N 1 1 mz::()@ — 0p) cos(mep) = (2N + 1) sin(p/2)” (219)
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(a) Nrmlzd. Chebyshev coeffs. (b) Nrmlzd. Legendre coeffs.  (c) Beam characteristics.

Figure 15: It is informative to utilize the window sequences in the Legendre domain.
Choosing rectangular, Hann, Bartlett and Blackman windows for the normalized Leg-
endre coefficients b), the expansion yields c¢). Equal results are obtained using the
normalized Chebyshev coefficients in a). ¢) differs from Fig.[14 c).

spherical beam circular beam
-3dB -6dB | -codB -3dB -6dB -oodB
/| A 1870 | o 2560 | 439° | o 160 ° | . 218 ° | _ 360 °
N1 N1 N+1 N+0.5 N10.5 N+0.5
N=2
—2.59° | =3.05° | +0.06° | —0.92° | —1.05° | 0°
N=5
© =0.05° | —0.06° | 40.00° | —0.01° | —0.01° | 0°
N=15
+0.11° | +0.13° | 4+0.00° | +0.03° | +0.03° | 0°

Table 1: Approximation Z and approximation errors € for main lobe widths of truncated
spherical and circular harmonics.

Fig.

illustrates the bounded radial region of convergence that is inherent to truncated-

Radial region of convergence for N-truncated shifted point-source.

order decompositions into spherical base-solutions. As a rule-of-thumb, a diameter
¢ can be given in wave-lengths as to bound this region
o N N
— < — =, 220
AT ow 3 (220)
Roughly speaking, this relation is responsible for the sweet-spot in Ambisonics and
characterizes the maximum alias-free diameter of compact spherical loudspeaker
arrays, cf. [WAO1L, ZPF09, ZSHO07]. In terms of musical instrument recording,

this diameter roughly limits the diameter, within which the instrument should be

carefully centered, i.e. the centering problem cf.[5.1.5.
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(b) Characteristics of band-limited circular beams (or DTFT) and their main lobe width.

Figure 16: Illustration of band-limited spherical and circular beam-widths.
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plane-wave representation, truncated at N=3 green-function representation, at r0/A=2 truncated at N=3

4§}'

r0f=2 truncated at N=13

Figure 17: Plane-wave and Green’s function (at 6y = 0, 79/\ = 2) representation using
truncated-order spherical base-solutions for different truncation numbers N. The radial
region of convergence /A < N/6 becomes obvious.
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3.3.3 Spherical Multiplication

The operation of multiplying two functions ¢g(@) and a(@) on the sphere can also
be performed in their spherical harmonics decomposition. The resulting coeffi-
cients ¢y, are linear combinations of the products g, m, @nym,. The linear fac-
tors describing these linear combinations are called Gaunt coefficients C7/2 72,
cf. [DH94]

c(0) = 9(0) a(6), (221)

Rl = ) O Gy G- (222)
ni,mi,n2,ma2
The computational effort to evaluate the Gaunt coefficient is unfortunately high.
There are some resources dealing with a faster evaluation that use tensor calcu-
lus. Usually, Gaunt coefficients are given for complex-valued spherical harmonics.
For more information regarding efficient evaluation of the Gaunt coefficients, the
interested reader is referred to [Xu96, Séb98, PHO7a].

Spherical multiplication is especially interesting to describe degeneracy of the
orthogonality relation for incompletely sampled spheres, on which a sampling den-
sity function a,, is available [PPSO01], i.e. Dt =37 Cltma™ ay, m,.

Moreover, the angular impedance problem given above can only be solved
using Gaunt coefficients. Furthermore, it can be interesting to apply angular
windows to given angular functions, in order to emphasize or attenuate particular
angular domains. However, this might mainly yield high-order decompositions.
Alternatively, the approach in [PZ09] could be employed for spherical windowing
using limited orders.

An unresolved question closely related to the Gaunt coefficients is: Is there a
(unique) minimum phase on the sphere?. This minimum phase should be defined
such that the coefficient used to create an angular magnitude pattern can be
resolved at lowest orders n — 0. As any pattern can be decomposed of a magnitude
multiplied by a complex-valued phase (or real-valued sign), one way to solve the

question could utilize the Gaunt-coefficients.
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Chapter IV

DISCRETE SPHERICAL HARMONICS
TRANSFORM

Many scientific disciplines use the discrete Fourier-transform (DFT) for the anal-
ysis or interpolation of discrete samples of data in time, space, or frequency. In
this chapter, the DFT on the sphere, the discrete spherical harmonics transform
(DSHT), is of particular interest. DSHT allows to obtain spherical wave-spectra
from the data of an array of sensors (microphones), arranged on a spherical sur-
face. Usually two preconditions are assumed for the calculation of the spherical

wave-spectrum
e the angular sampling must be suitable to calculate a DSHT
e the data must be angularly band-limited to the maximum order of the DSHT

This chapter provides an overview over a variety of ways to sample the sphere
and of actually calculating the DSHT as found in literature. The properties and
restrictions for the different DSHT methods are explained. The chapter concludes
with a novel comparison of efficiency and angular aliasing properties of different

sampling schemes, parts of which have been briefly introduced in [Zot09].

4.1 Matrixz/Vector Notation (Spherical Wave
Spectrum)

As defined in Chap. 2, the spherical wave spectrum can be very useful when de-
scribing problems in spherical coordinates. We introduce a vector /matrix notation
for the spherical harmonics in order to simplify our computation and the subse-
quent descriptions of the DSHT. For this purpose, a linear indexing scheme can

be introduced, using finite sums:

m n—1 n’
q= Z 1—1—2 Z l=mn+1D+m+n)?=n*+n+m+1. (223)
m/'=—n n'=0m/=—n/

Assume a spherical harmonics coefficients b,,,,. We use the ¢ to index b, = by,

linearly. It is then simple to define a vector by = vec {b,} = vecy {b,, } containing
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all coefficients for 0 < n < N:

bo, o
b1,-1
by :
b bn,—n
by = vec{b,} = :2 = vecn {bpm } == ’: ont1 | (224)
b(N+1)2 bn,n
b N

If the expansion b,, is independent of m, the following can be used:

bo
b
b b O
N—VeCN{n}— 2n+1
bn
bn
Similarly, we define a spherical harmonics diagonal matrix as:
boo O, 0 0 0
0 bi,1 O 0 0
diagy {b diag {b 00 ho 0 ! (225)
ia nwm p = dia, =
o (b =ding (o} = | T
0 0 0 0 ... byn

For the sound pressure and the sound-particle velocity, the notation of the spherical

wave spectrum becomes compact:

Yn (kr) = diagn {jn (kr)} bx +  diagy {hf) (kr)} CN (226)
un (kr) = diagy {”’;#} by + diagy {lhn(:)#} ex. (227)
Matrices consist of a collection of vectors bl(\ll) in the shape
By = mitx {bf@} = mtxy {0}, (228)
= (60, .. b))

These kind of matrices are required when dealing with discrete spherical angle

geometries.
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4.2 Daiscrete Spherical-Harmonics-Transforms
and Sampling the Sphere

In many cases, it is desirable to obtain the spherical harmonics decomposition from
a discrete-point representation on the sphere. Specifically, we can obtain a spher-
ical wave-spectrum of a sound field from the discrete distribution measured with
a spherical microphone array. The spherical harmonics can also be understood as
approximative interpolation between the spatially discrete points.

Closely related to the question how spherical distributions can be transformed
into spherical harmonics, a sampling strategy for spherical surfaces has to be
found. This question is of importance for both spherical loudspeaker and micro-
phone arrays in acoustics. Its solution offers important answers to down-to-earth
questions:

How shall I arrange ..

e ...a surrounding spherical loudspeaker array for higher-order Ambisonics

playback?

e ...acompact spherical microphone array for higher-order Ambisonics record-

ings?
e ...a compact spherical loudspeaker array for directivity pattern synthesis?
e ...asurrounding spherical microphone array for directivity pattern capture?
Transform on the continuous sphere. As we know from Eq. (28), the spher-
ical harmonics transform is computed by an integral. This integral can be written

as a projection of a distribution g (@) on the base of the continuous spherical

harmonics y (8) = vecy {Y,™(0)} over the unit sphere $2, with N — oc:

7= [ 5 9(0) ap, (229
Yy (0) = vecn_oo {Y,"(0)} . (230)

Eq. (224) gives a definition of the above vector notation. Complementary to this
integral, the scalar, continuous space function g (0) is obtained by an infinite sum

over all the spherical harmonics weighted by the coefficient vector ~:
9(8) = y(6)" . (231)
4.2.1 Types of Discrete Spherical Harmonics Transforms

The spherical harmonics expansion on a sampled sphere is directly equivalent to
Eq. (231). The distribution ¢(@) is sampled on a set of L discrete spherical-angles
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{6,} and written as a vector g:

g=|"" (232)

g(6r)

Usually, the spherical harmonics expansion is assumed to be band-limited by the
order n < N. Accordingly, the expansion given in Eq. is written as

g=Yy W, (233)
YNT = mtxy {Ynm(el)}T , N = veen {Yam} - (234)

Using L nodes and the (N + 1)? band-limited spherical harmonics, the maximum
order for an (over-)determined transform pair equals Ny = |V/L—1]. For various
types of transforms, the truncation has to be smaller than that N < N ... The
ordered list below shows the most important types of transforms. These transforms

impose descendingly strict requirements on the sampling grid {6,}:

1. Hyperinterpolation on the sphere requires exactly L = (N + 1)? (critical)
sampling nodes on the sphere. The sampling nodes must provide a well-
conditioned matrix Yy, so that an exact inverse exists YNYN’1 = YN’IYN =

I. Given such points, the expansion reconstructs perfectly at every node.

2. For equal-weights quadrature/t-design, the rows of the matrix Yy must be
orthonormal (up to a scale factor) , i.e. Y Yy = al. The few sampling
constellations fulfilling this requirement are usually over-determined, i.e.
(N +1)? < L. Therefore only band-limited distributions g = Y3 x can be

fully resolved, reconstruction at {6,} is only approximate otherwise.

3. For weighted quadrature the rows of the matrix Yy must become orthonor-
mal, at least after applying specific weights /w; to the nodes. Usually,
weighted quadrature grids are over-determined. With the squared weights

in a vector w = vec {w;}, this reads Yy diag {w} Y = 1.

4. For a least-squares transform, the matrix YyYy needs not equal unity, but
must be well-conditioned. Usually, suitable sampling grids will have to be
over-determined. Using the least-squares inverse, the transform yields the
best approximation, which is the exact inverse only in case of a strictly
band-limited distribution g = Y3 yn. Otherwise, only approximate recon-
struction is feasible. Approximation errors tend to be high in weakly sampled

regions on the sphere.
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5. For a weighted least-squares solution, the matrix Yy diag {w} Y5 does not
need to equal the unity matrix, but must be well-conditioned. Usually,
suitable sampling grids are over-determined. With properly chosen weights
w, the condition number gets better and the approximation error is more

uniformly distributed.

6. Regularized (weighted) least-squares, discarding linear dependencies can help
if the matrix inversion is ill-conditioned for the required order N. This
is mostly due to unevenly distributed sampling nodes or missing parts on
the sphere. Exclusion of linearly dependent rows from Yy or forming new
harmonics can regularize the matrix inversion. Exclusion is done either
by iteratively removing the harmonics that are most correlated over the
sampling grid YnYy or by exploiting a priori knowledge based on spherical
harmonic symmetries. Alternatively, a regularized inversion using reduced
sets of base functions can be found by eigenvalue decomposition that yields
excellent approximations. Some of these transforms, however, may require
relaxation of the general assumptions about band- and angular-limitation of
