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WARPING OF 3D AMBISONIC RECORDINGS

Hannes Pomberger and Franz Zotter
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Abstract: In order to modify or adapt the spatial image of higher order Ambisonic recordings, e.g. made with spherical
microphone arrays, there is still a need for algorithms. Originally, warping of the recording image has been proposed,
which is able to widen the spatial mapping on one side of the surround image, while squeezing the recorded scene on the
opposite side. This so-called dominance effect has been proposed in the papers of Gerzon and can be regarded as useful
sound engineering effect. Smilar effects are only available for MS or double MS stereophony to adjust stereophonic
coverage angle. The available literature about this warping does not present algorithms for higher order Ambisonics.
This article investigates suitable algorithms, and intends to investigate new algorithms based on recurrence relations.
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1 INTRODUCTION angle, only, and their argument undergoes bilinear transfo
mation.

Amblson|c recording tec_hnlques have the advz_intage ?ﬁgnce, the main issue in this contribution is to discuss the
uniform surround resolution. As there are new higher-order . . . .

. X . . warping of the zenith angle, in order to strech the mapping
microphone arrays for recording, the question of spatial mg ST .

: . ..ot an Ambisonic signal away from the equator. This en-
nipulations becomes more and more relevant. This is PR es a particular region of the coverage anale. allowin
ticularly true, because the uniform surround resolutioesdo 9 P 9 9 ge. 9

not naturally support modification of the recording covefr(-)r modification of the surround recording image.

age angles, as common in stereophony. In principle, #&th this comfortable focus on the Legendre functions,
transform on the ambisonic channels is only a matrix op@roperties of suitable warping algorithms can be described
ation, however, either a precise knowledge of the involvatdtwo different ways. Both eventually intend to yield re-
polynomials is necessary, or the matrix has to be determirggbansion coefficients that are applied as a time/frequency
numerically. independent signal matrix, which re-expands and warps

In fact, the so-called "dominance" transform is known f(grlven Ambisonic signals.

1st order Ambisonics, but the desirable generalization ©fi the one hand, a numerical type algorithm samples and
this algorithm to higher orders is still missing. Essejal re-expands the warped associated Legendre functions into
the regarded transform is a bilinear transform along one sgize un-warped Legendre functions. Herewith, the conver-
tial direction. In this direction, the angular mapping is bgion coefficients are directly found, numerically. On the
widened, while on the opposite side the acoustical imagéner hand, an analytic algorithm is desirable and could
is compressed. For recording technicians the, warping @ilake use of the recurrence relations of the Legendre func-
lows to adjust the recording angle in which, e.g., orchestians. The analytic approach is outlined in the paper, ryainl
instruments appear in their post-processing. to show its mathematical ingredients. It is not prepared yet

Whv polar warpina is sufficient. To aeneralize this t eto give details about the best and easiest implementation.
yp ping ' 9 yp Nevertheless, the numerical algorithm is fully functional

f transform to higher-order Ambisonics, it is m m- . . . . .
of transform to higher-orde bisonics, it is most co and readily provides the desired coefficients at an easy im-

fortable to use the z-axis as a warping direction, mathq- ; )
: : : : ementation level, however at a lower level of mathemati-

matically. Combined with a pre and post rotation, warp-

. ) Lo - calelegance.

ing with regard to any direction becomes accessible: {2

surround field represented in Ambisonics is first rotated $o avoid an increased loudness of the angularly stretched

that the respective direction of warping points upwards tatdio scene in contrast to the compressed part, an optional

wardsz, where it is warped to or from, and rotated bacttirection-dependent amplitude function is described, for

afterwards. As it becomes obvious later, this largely Emitvhich an analytic algorithm has been found.

the description of warping to the associated Legendre func-

tions that describe the dependency on the zenith angle, i.e.

z-axis. These functions depend on the transformed polar



Un-normalized spherical harmonicsare used in this paper
to keep the math simple:

fi = cos(?)

a = sin(e)

Y (,9) = Py (cos(9)) €. (1)

Herein, P/ (cos(v)) are the associate Legendre-functions,
9 is the polar (or zenith) angle, andis the azimuth angle.

2 WARPING OF THE POLAR ANGLE

Given an Ambisonic signab!”*(t) to linearly combine the = cos(1)
spherical harmonics, the signal is expanded into contiauou

anglesp, ¥, i.e. azimuth and zenith, repsectively, Figure 1: Mapping by bilinear transform gf.

(e, 9,1) Z Z Yo' (e, 9) 63’ (2), (2) et side of Eq. §) to a single term; integrating the Ed)(
nmomen over%ﬁ” ) dp [ yields
the task of an angular warping is to find the Ambisonic sig-
nal ™ (t) that exhibits a warped polar (zenith) angdle m Z w™ G, @)

= Z Z Y, (,9) (;Bmt), (3) Wwhereby the re-expansion coefficients are

n=0m=-—n
| i, = CHREEED (1 P () P (u) . (8)
In both equations;-n < m < n, and0 < n < N, or
for the second equation with another lifiit< » < N. The Inserting Eq. 7) into Eq. &) shows that the coefficients
warped distribution in Eq3) can be expressed equivalently,’™, also connect the original and the warped associated

as a sum of warped spherical harmonics weighted by thegendre-functions,
original Ambisonics signals,
> Fin) Zw::%n o = ZP;"(&) ¢

N n
Z Z ym Z Z Y (@, 0 d)m 4) :ann i = P™(jn). 9)

n=0m=-n n=0m=—n

By integrating over the azimuth harmonie&® ¢, orthog-
onality [ €™ ¢e™i¥ dp = 2x6™ ™ yielding a Kronecker
delta can be used to reduce one summation 3 NUMERICAL RE-EXPANSION

m () o The straightforward way of determiningge;l uses numer-
Z Py Z P n ®) cal integration of both the original and warped associated
Legendre-functions.

wherebyy = cos(¥), ji = cos(?)) is used in the following Equally spaced discretization. The coefficients can be
for notational convenience. The search of re-expansion émind numerically by discretizing their definition integra
efficients can be focused on the Legendre-functions at fiisto L. equally spaced points; = —1 + I =5 1 yielding

Bilinear transform. In particular, the warping relation un-f = fil_i ,and

der consideration is a bilinear transform between normal-

izedz-axes: andy, yvhich always maps the pqimzs: +1 wh, A~ (n'+m)!(2n+1) +m>'(2" +1) 2 Z P () P7H(fi).  (10)

to i + 1 and remains monotony, however distorts all an-

gles between. For instance, the equatorial pgint 0 is . o )

mapped tqi = a by the angle: = arcsin(a), ¢.f. Figurel. In order to obtain sufficiently accurate values, the dis-

This transform was proposed in the work of Gerztpend cretization number should be large compared to the result-

also investigated in Sontacchi’s thes® [ ing orderN after warping, and error below100dB could
only be obtained using = 10° in own simulations.

n+a

1+au

(6) GauB-Legendre quadrature and discrete transform by
inversion. Alternatively, either the Gaul3-Legendre quadra-

Re-expansion. The orthogonality relation of the asfure rule B] can be used to obtain accurate results with

sociated Legendre functionsfl P () P () dp = much less points, the integration can be done by pseudo-

inversion of the the sampled Legedre-functions
%&1 n, Ccan be used to reduce the sum on the P 9

2

Ia:
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0° 5 10¢ 15 20¢ 25 30

m=0] 3 5 5 6 6 7 8
m=1] 3 5 5 6 6 7 7
m=2] 3 5 5 6 6 7 7
m=3| 3 4 5 5 6 6 7
P (i) Pr(pa) - Pg(m)\ [wim .
. _ : . . : Table 1: Required ordeN for warping anN = 3 order Am-
o . ' . ™ bisonic signal by warping angles= arcsin(«) is shown,
B () Pri(pe) - PR(un)/ \wg,, depending on the index of the Legendre-functions. As a

Prm = Pp Wom = Wom = P Prm. criterion, the re-expansion coefficients for normalizeucfu
(11) tions below%% |wl,. | > —30dB were omitted for alk.

4 ANALYTIC RE-EXPANSION

to find their weights, which was the favored option, herT.he _mteg_ral n Eq. § re-expanding Warpqd ngerjdre-
unctions is easily evaluated for the expressions in E&y.

For real-time calculation, pre-computed pseudo-inverse
matricesP,, can be used with a moderate number of points, 0 _ on/41 (1 po B

e.g.L = 50. However, as always, care must be takento "0~ 2 J=1 P () dpp = 00 (12)
avoid spatial aliasing as higher orders components are gen- wg , = % f_ll 17:“01 dp

erated by warping; theoretically, the order needs to be infi- 021 1

nite to be entirely accurate. =% (In(l+a)-In(d-a))+5. (13

Required re-expansion orderN. Table uses the dis-With the recurrence relations of the Legendre-functions,
crete transform by inversion to retrieve, which maximumf. [4, 5], new recurrences are found for the re-expansion
re-expansion ordeN is required for varying warping pa-coefficientsw)’, of warping, c.f. AppA. Relations of the

rameterfa = sin(e) and the original ordeX = 3. recurrences are shown in F@and detailed below
|
(n+1)(n+m)  m nn—m+1) m _ (W +2)(n +m+1) (' =1)(n"=m) m
o+l Wn'n—1 " T onr1 Wn/in+l T 20’13 Wy/p1,n — =1 Wn/—1n» (14)
(ntm)(n'+m+1) m n+m,,m (n'=m)(ntm) = m
@43 Wnit1n-1 T 2pi 1 Wnin—1 T Y@ —1) Yn/—1,n—1

(n—=m+1)(n'+m+1) m n—m+1, .m (n—=m+1)(n'—=m) m o
+ D@3 W4+l T Ton T Wnimt1 T O G Wnl— 141 =

2n/ﬂw$717n1 (15)

’

n/+m+1wm + aw™ + n
2n/+3 “n'+1ln n',n

(n—m+1)(n—m+2)(n’+m) m—1 (n—=m+1)(n—m+2) m—1 (n—m+1)(n—m+2)(n’—m+1) m—1
En+1)(2n'+3) Wor il mt1 T a1 Wy pp1 T O Gnil) (2 —-1) W/ 1 nt1
o a(n+m—1)(n+m)(n/+m) wm—l _ (ntm—1)(n+m) wm—l o a(n+m—1)(n+m)(n/—m+1)wm—1 _
(2n+1)(2n'+3) n’4+1,n—1 (2n+1) n’,n—1 (2n+1)(2n'—1) n'—1ln—-1 "
(n'=m)(n’—m+1) (n’+m)(n'+m+1)
\/17042—271,_1 w:?—l,n - 170‘2—271/-&-3 wZ?_HW. (16)
m =10
n=0 1 2 ‘
, 0 m m m—1 m
n =0 L |wp,|? n—1mn n+1 n—1n n+1 | n—1mn n+1 n—1mn n+1
1710|717 n —1 n —1 in'—l n —1 :
210 |2 !~ n' n' n n'
n n +1 n +1 %n'-i—l n +1
(a) Initialization, (b) Recurrence 1, (c) Recurrence 2, (d) Recurrence 3, c.f. Eql16)
c.f. Egs. 12)(13) c.f. Eq. 4 c.f. Eq. 5

Figure 2: Recurrence theorems for warped Legendre functions.
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5 MAGNITUDE EMPHASIS sound field with rotation matricésin fact, it is sufficient
to describe multiplications of the Ambisonic field with a
The angular warping enlarges sources in the stretchedoardioid amplitude pattern pointing upwards, i.e., with th
gion while keeping the same source amplitude at the denith angley, a continuous, normalized gain function
rection of the source. By the enlarging or squeezing of

sources with finite extent, the energy, i.e. loudness, of the g(0) = Lcos(m. (21)
affected content might change. It is therefore useful to re- V1+a?

gard the mapping relation to find a compensation for this

effect. Also apart from this, such an angular loudness mdggsentially, it is clear that a multiplication of an Ambison
ifier might be beneficial. signal with this rotationally symmetric pattern will onlf-a

) fect the shape with respect to the zenith angle, while the
The enlargemento of sourcescan be described by theshape in the azimuth is retained. Therefore, the desired

derivative of the mapping relation transformation only depends on relation between the zenith

Of 1 angle related Legendre functions. Omitting their normal-

= A ? (A7) ization for simplicity, this is expressed as:
o
~ 1+ oL ~
1—a? (1 —af)? 7ZPW( m:Z m m
= = n M) (bn n’’ (:LL) n'’ - (22)
(1 + ap)? 1—a2 V14 a? 4 "y

Consequently, to obtain an energy-preserving warping ofhe relation between the coefficient§' and ¢ corre-
eration, regions with increased sources must be weight@énds to

accordingly. The de-emphasis after warping is

N 1
ot n'4+m)!(2n’ 1 + QL
L T @ o = > o e [ L0 b P ) d
Y- - 18 n n 2(n’—m)! 3 n n
\/E 1— Oé/l ) ( ) n—"0 1Vt o
N
or, alternatively, the pre-emphasis before warping _ Z gm M. (23)
1 l4ap (19) n=0
Voo J1i—a? is derived in the appendix by utilizing the recurrence and

Clearly, the second variant is easier to implement as itqghogonality of the Legendre functions.

only a multiplication by a first order polynomial, for which_oudness modification for Ambisonic signals.As given
there exists a recurrence relation of the Legendre funstiorin Eq. (47), the loudness modified Ambisonic singal8 (¢)
First order magnitude emphasis.Even without There are are obtained from

already high level algorithms as sketched @([Referenz et om m nemtl m
Student+Svenson, AES London, 2011), which use modjm ;) — @ gyt Gna () + O (H) + o 7 "*1(75).
fied sets of basis functions to attenuate particular divesti " V14 a?

similarly, also the papei7] allows to suppress signals from (24)
specified angular regions in the surround image. The p
sented algorithm here shall be simpler but also relies o
general concept.

fﬁ’general, this will yield a signal of the ord&r+ 1 when

thad given signal was of the ordét. Note that the inverse
weighting operation witti1 + ) ~! is not so simple, how-
Given the Ambisonic signab™(¢) as expanded in Eq2), ever, there is a solution in the appendix, for some special
the task of an angular loudness modification is to find tisase with a priori knowledge.

Ambisonic signalsy™ (t) that represent the original Am-

bisonic signal multiplied by an angular gain function 6 CONCLUSION

N n
fp,0,1) - glp,9) = Z Z Y™ (p,9) ¢7(t). (20) Numerical and analytical relations for warping were shown
n=0m=—n and a detailed theoretical description was given. Based

In general, this can be achieved by the Gaunt CO%] this theoretical considerations, a practical applicedf
ficients B](Referenz, Driscoll Healy) when given th arping to higher order Ambisonics is now feasible. Such

spherical harmonics decompositiqﬁ/ of the gain func & spatial transformation will be a useful tool for editing 3D
’ " high Ambisoni ings.
tion. With the Gaunt/Clebsh-Gordan coefficients, the!g er order Ambisonics recordings

modified Ambisonic signals can be obtained (t) =
Zn’,n”,m/,m” O::}’;“T,Am’yg} m/ (t)

This section presents a simpler algorithm, which multgli@hanks go to Alois Sontacchi, Joseph Anderson, and
the audio scene with a rotationally symmetric cardioid aritichael Chapman for making the second author aware of
plitude pattern. Given algorithms to rotate the Ambisonihe need for such algorithms for recording.
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A RECURRENCES FOR WARPING

The relation with unknown re-expansion

P (p) = Wiy Pt (),
n

" "

,m
can be modified by inserting three different recurrenceiceia

(1= p2) gk Pr(p) = bl pr () — 2t pre (),

PP (p) = SER P () 4+ BB (),

1— 2P (p) = (ot llnoma®) pm i) — km o ebm) pmet(y,),

Recurrence 1 The application of the chain rule is necessary to employitherecurrence Eq26)

m

d;i‘upfzn(ﬂ) = n’’ wn”nipg}’('u’)’

1—af)? -
U=ah)” 4 i) = Y, wih, 42 P (),
on both sides
1—ap)?® +1)(n+ —m+1
(1—(a2)oéllt)—ﬁ2) = 27)1(47:1 L Py (p) — %Pﬂﬂﬂl) =
//+1 //+ 1" //_ +1
T | S with, S P (1) = 3y Wi, e L P () -
With 1 — 2 = % on the right, many things cancel
+1)(n+ ~ —m+1 ~
(et D) pre () — 2t P () =
//+1 //+ 12 //_ +1
o W SN P (1) = 3,0 Wi, e P (1),

and inserting the unknown re-expansion 2§)(on the left hand side yields

(n+1)(n+m) m m n(n—m+1) m m _
2n+1 n’ wn”,nflpn”( ) T T on+1 n' wn”,nJran” (/L) =
(n//+1)(n//+m) m m //(n//7m+1) m m
Zn” (2n”+1) Pn”—l(:u’)wn”n - Zn” (2n”+—1) Pn//+1(u)wn//n.

Using the orthogonality relation by integration ovef’ d fjl each sum reduces to one term

(n'4+2)(n'+m+1)  m (' =D(n'=m) m
wn/-i-l,n (2n’'—1) Wy

(n+1)(n+m) w™ nn—m+1) m
n’,n+l = (2n'+3)

2nt1 n'm—1" " opy1 W

—1,n"

Recurrence 2.Multiplying Eq. (25) by z yields with the recurrence ERT) on the left hand side

AP (i) = g Py () + 25 P (),

(n-+ )P (1) = (1 + o) (55 Py () + S5 P ()

and leaves a factor on the un-warped side

(@) 320w, P (1) = (1 + ape) (;’Jﬁ o Wity PR (1) + P 52w P (u)) :

m n'"+m pm m n'' —m+1 pm _
ntt Wpiy (mpn”fl + aPn” (M) + T’Jrlpn’url -

,,+ "_ +1
B S w0y (S P () + P () + 2P (1))

B //+ //7 +1
+ HQnﬁJ{l it Wty 1 (%ﬁpm—ﬂﬂ) + Py () + %Pm+1(ﬂ)) )
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(25)

(26)
(27)
(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)



Using the orthogonality relation by integration ovef’ d f_ll, each sum reduces

n'+m+1, m m n'—m, m =
g3 Wnigin T OWyin + 50 Wes_ypy =

ntm (a(@ +m+1) m m a(n'—m) . m
2n-+1 ( 2n’+3 wn’Jrl n—1 + wn’nfl + on’—1 wn’fl n—1

n—m+1 [ a(n +m+1) m m a(n’—=m) m
+ ont ( i3 Wnigintl T Waine1 T 5= Wh/—1ng1 ) - (39)

Recurrence 3.The third recurrence Eq28) inserted into Eq.45) yields

1 |:(n7m+1)(n7m+2) Pm_—ll(ﬂ) _ (n+m—1)(n+m) Pm_l(ﬂ)} _

V1-p2 (2n+1) (2n+1) n+1
" +1 " +2 1 N+ 71 //JF 1
L 3w, | R Pt () — () it ()] (40)

With the property of the bilinear transform

1— n2+2pata?

1—a2 1t2patp2a2 1+2pa—2pa—p?—a? _ /1—a? (41)
1—p? = 1—p? o (Iop)?(1-p2) = I+ap?

the divisor simplifies to a linear term

(14 au) [wpﬁ—ll(ﬂ) _ M}Dm—l(ﬂ)} -

(2n+1) (@n+1) n+1
m n' —m+1)(n"' —m+2 m n' +m—1)(n""+m m
T—aZS,, i, [( ;n?/(ﬂ + )Pn,,tll (1) — %P’n”—tﬁ (M)} . (42)

Inserting the unknown re-expansion EB5) yields

(1 op) |2 5w P () — ) 5w P )| =

(2n+1) n’'n+1 2n+1)
VI= 0?5, 0, |G prith () — (D pril ()] (43)
Using Eq. 7) replaces the linear multipligr
(o 5wl [ P )+ P ) + S P )]
— R iy [ COEEEER P )+ P () + 2 P ()] =
VI= @2 Y, i, |t pri () — e prl )] (44)

Using the orthogonality relation by integration ovef’ d fil, each sum reduces

(n—=m+1)(n—=m+2) [a(n'+m) m-—1 m—1 a(n’=m+1)  m—1
(2n+1) 2n/+3 wn’+n+1+wn’n+1+ 2n/—1 wn’—1n+1
(ntm—=1)(n+m) [a(n'+m) m—1 m—1 a(n’=m+1)  m—1 _
- (2n+1) 5713 Wn/itin-1 T Woin 1t T o1 Wy 1p-1| =
/ 7| (W =m)(n —=m+1) m (n'+m)(n'+m+1) m
l -« 2n’—1 wn’—lni 2n’+3 wn’+1n . (45)

B ANGULAR LOUDNESS MODIFICATION
Utilizing the recurrence relation. Inserting the recurrence relation given in (Gumerov andaBuwami, Zotter) in
Eq. 22

(n+m) Po_y(p) + (n—m+1) Poyr(p)
2n+1

w By (1) =

)

the expressiop’, = % fil \}TJ;LS—Q P (u) P (p) du can be expanded to

1
m  _ (n+m)!(2n'+1) Oé(?’L + m) pm m Oé(?’L —m+ 1) m ) m
n'n — 7 n— +Pn + Pn Pn’ dp. 46
g T2t/ —m)! [1 ((2n+1) T+ a2 (1) (1) 2n+ 1) T+ a2 +1(M) () dp. (46)

7



Due to the orthogonality of the Legendre-functléﬁsM fll PP dp = Oy

l+ )[
[z gn = 2nEm s g 2=, (47)
gn n — om+ 1 n’,n—1 n'n o+ 1 n’,n+1-
For the conversion of given coefficient§’, this means
a(n+m) 1 n—m+1 m

hm — "+« . 48
on' = @n+1)VI+a® " T AT @n+1)VI+aZ " (48)

Inverse emphasis.Given anN™ order, one can be assuredq?):g‘+1 = 0and q%‘w are always zero. Consequently, on
could attempt to calculate a signal with inverse emph&@imsing

a (N +m) N—m+1

(2N + 1)V1 + a2 N-r Vita? /Q,Nq,/,/lJr AL

which, however, does not yield one, but two expressionsertimg N + 1 reveals how one of these coefficients must
behave:

(49)

5 =

~ a(N+m+1) —m+2

R = G i R R 0 G

but not usefully. In fact, it seem that for a general solutioere must be an infinite number of non-zero coefficients for
inverse emphasis.

(50)

De-emphasisNevertheless, if the present signal is known to result frompleasis, one could argue that before emphasis
its order has been lowé¥ = N + 1. In this case, it is possible without errors to determiife by knowing¢;' =
Vn > N. Therefore,

m N+ 1)VI+a? -

mo I . 51
N-1 a(N+m) N (1)
m (N —1)y1+a2 o eN-1) (52)
N=2" 4a(N4+m—-1) N1 aN4m—-1) NV

Cn+1V1i+a? - (2n+1) n—m+1 R
mo = LA e 14 B S f <N -2
n—1 a(n+m) n a(n+m) n n+m ntl orn = (53)
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