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Abstract: Spherical harmonics are often represented as images of three dimensional forms. Inspection show
mirroring these (here, a reflection in the planes of the three axis pairs) frequently results in no change. That is symrmr
exist.

Using direction cosine formulae for the spherical harmonics these symmetries are established and then extrapol:
higher degrees.
The results are used

¢ to produce formulae generalised for an any order signal set for reflections about the planes,
¢ to produce ‘skeleton’ matrices for pitch and roll, rotationsd@° steps, for any ambisonic order, and,
e to prove algebraicly that dominance —for practical purposes— is uniquely a first—order transformation

It is suggested that this approach may also be useful in an analysis of ‘redundant channels’ in decoding.
An extension from consideration of transformations in ste@ofo ‘any angle’ transformations provides a surprisingly
simple (though currently tedious) method for deriving transformation matrices for real spherical harmonics.

Key words: symmetry, direction cosine, spherical harmonic transformations.
For many uses, though, assigning a unique integer to each
channel is more convenient and the channel can then be de-
scribed asB,,. This, theambisonic channel numbéscn),
is related to(l,m) asn = I(l + 1) + m. Spherical har-
1 INTRODUCTION monics may likewise be notated &5. (See Chapman &
Cotterell's paper to this Symposium][for a more detailed

It is only slightly overstating the case to say that description.)

physics is the study of symmetry  P.W. Andersof

Spherical harmonics are usually described in terms of thI rflgure 1 it will be seen that reflection through the x-y

degreé () and ordet (m) within that degree, written asPlane, the y—z plane or the z—x plane frequently results in
ym ' no change to the spherical harmonic.
R

The channels in an ambisonic signal set are each relateé-ggs irl\rlzla?: ?grsrigf[‘f’g:f'mc"? ;ﬂ%ﬁeg;% \ggrlr(]);s Z?;m;g?;agi
a specific spherical harmonic, and can be writas B;". u S lons ISONIC signal Sets. X

ple By is invariant under any rotation. To generalise from
2Nobel laureate. The quotation is attributed to his 1972 essay “Mordftese observations we turn to the equations for the spherical

Different”. harmonics illustrated in figurg.
31, any integee> 0.
“Not to be confused witambisonic order That is bold upper case letters represent matrices. We will alsBj98’,
m an integer such thatl < m <. etc. to represent a component and a signal set that have been transformed.

5In this paper we usé to represent a component of the signalBet 6n is an integer ang 0.
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Figure 1: Graphic representation of the early spherical harmonics. The axelalee), y (red) andz (green) with
positive directions up/away from the reader. Rowslate 0,1 = 1 and! = 2. Columns aren = —2tom = +2.
Thus theswHs illustrated aréy / Y1, Ya, Y3/ Yy, Vs, Ye, Y7 andYg. Graphic courtesy of an@ Bruce Wiggins, Signal
Processing Applications Group, University of Derby.

2 DIRECTION COSINES

The equations for spherical harmonics are generally ex-
pressed as functions of azimuth) @nd elevation ¢), for

. ) Yo = 1
example (in N3D 8]): PR
_ . Lo . 2 Yo = \/g T Uz
Y, = V15 cosf -sinf - cos” ¢ Ys — V3.
. . . . . Yy = \/ﬁ CUg Uy
now this’ may equally well be written in terms of direction % = v 'u-"
cosines: = NN
Y.=+v1 Yo = 7'(2uz—ux—uy)
4= 5'Uz'uy Y7 = \/ﬁ'uz'uz
where [LO] Yy = % (u2 —u2)
_ Yo = 35wy - (3u2 —u)
) Uy = Cf)s(o) - cos(¢) Yie =  VI05-us -t - uy
U=| Uy = sin(f) - cos(e) 1) 21 2 2 2
. Yll = *’uy'(4uz_ux_uy)
u, = sin(g) Ve !
Yiz2 = 777-uz S (2u? — 3u2 — 3u§)
— 21
Generically one might write: Yis = T e (duf —uf - )
Yia = 120: “uz - (u —u?)
Y, = an(0,9) Yis = \/%5 “ug - (uZ — 3ul)
wherea,, is a function, or for direction cosines: Table 1: Direction cosine forms of the spherical harmonic
Y, = by (s, 0y, ) ) equations used in ambisonics, from the work of Philip Cot-
Y terell [5]. In N3D [8], and here converted so terms have
whereb,, is a function. equal powers (see text for explanation). (The tabulation

Early values, for direction cosine forms, are widely putsz_ontinues in table.)
lished (e.g. Daniel I1], upto third order), Fons Adri-
aensenT] kindly supplied the author with values for fourth

"This is often further ‘simplified’ agos 6 - sin 8 = (1/2) sin(26).
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degree, and Philip Cotterell's worlk2] has extended thethree axis planes it is reflected through. Likewisale-
published figures to sixth order. Thomas Mus§] has in- scribes aH that is invariant when reflected through they
dependently published values upto fifth order. planeor z—xplane —put another way it is invariaakcept
g?_r reflection through thg—z planethat is unless thg-axis
Is inverted. So the letters in outyz notation describe the
axes which if inverted do transform tisei.

There is a general pattern to the the direction cosine f
mulee (tabled and2), it may be expressed as

Yn - kn . fn(uzauyyuz) : gn(uivu?pug)

The utility of this approach can be seen in deriving mirrored
soundfields. If we wish tdlip a soundfield (that is swap
where: left and right, with up, down, front, back unchanged) then
inverting (multiplying by —1) all the channels whose SH

° (klf{ i|: g?;e(l)yirr:tuer?eesrtlcr?el.re. but possibly worth remar gguations have, in f,, (thatis the third, fourth, seventh and

ing, thatk, is always of the form{a/b) - \/c/d where eighth in the list above) will achieve the desired mirroring.
a, b, c,d are positive, non-zero, integers.) (Likewise aflop (swapped front and back) is achieved by

e [, is of the formu? - u - u”, wherep, q andr may negating those with,., and aflap (swapped up and down)

each be eithed or 1. Tﬁ/is part is discussed in furtherIS achieved by negating those with.)

detail below. It should be noted that Sontacchi, Zotter & Holdrickd]
used a similar approach when considering domed loud-

H H 2 2 2
® gn is a polynomial ofu;, u, andu;. As such, then speaker arrays (see figuzeéater in this paper).

inverting (multiplying by—1) any combination ofi,,,
u, andu, will not change the value af,.

(This part may be written in a multitude of ways ..8n

2 2 2 __ e . . . .
—asug +u, +u; = 1, always. See below for a fullerqr initial interest isf,,, but later in extending the concepts
discussion.) here we will return tag,,, and so some remarks are made

The prime attraction of direction cosines is thgtcan be about its form.
pre-calculated and then determining the variable part 1gs 2 + 42 + 42 = 1 then a term of any (even) degree can
y z

x

quires no square roots and the only trigonometric calls g optained by simply multiplying by2 + u2 + u2 —that
to obtain values for the three variables, all the rest of they muttiplying by1. v

calculation is simple multiplication, addition and subtrac- ) ) )
tion and thus relatively speedy. There is though a (or possibly, at least one) simplest render-

. , . ) . ing where:
Our interest here, though, is the ability to split the variable

part in two, and in particular to then stugly.

J
. go =3 ko2 a2t ©)
n =1
fn must be one of the following:
1 where
Uz pHag+r+2(s+ti+v) =1 4)
Uy
Uy that is the equation can be de—simplified to a series of terms,
I each having a power equal to the degree ofshe This
um uz approach has a certain ‘simplicity’ to it, it is introduced as
e it also aids calculations.
x Yy z

For convenience of notation we will frequently substitute AS Uz ¢, anduZ are not independent of each other, then —
for u,, etc., in this papet.It will be seen that describes a @S Previously commented-— eash can be written in a mul-
spherical harmonicsiH) that is invariant whichever of thelitude of ways. The most obvious example is perhaps for
Y. These are all functions solely sifa(¢) in (6, ¢) nota-
8This has some justification beyond convenience. Gréép for ex-  tion, and asu, = sin(¢) they can rapidly be derived from

ample, uses:/r, y/r andz/r and comments (page 22) “usually= 1". ; o ;
Readability favours the Cartesian coordinates of a point on what is a utlr?ne (©, (b) versions. This is not only convenient, but also

sphere, rather than direction cosines of a unit vector. Practically they gl%monStr‘?‘teS the relationship between the two formats. To
the same. take the simplest exampl&y):
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Yie %\/i’iumuy(ug—ug)
Yir = % %-uy-uz-(i’)ugfu?%)
Yig %\/gugcuy(ﬁuz—u%—ui)
Yig = % g-uy-uz-(4u§73u373u5)
Yoo = % . (82;1 + 3uf + 3uy, — 24uZu2 — 24uu? 4 6uiul
Yo1r = % g-uz-uz-(4u§73u373uz)
Yoo = %\/g(ui—uz)((iuz—ui—u;)
Yas = % 375(u§73u5)uzuz
Yoa = §-/35-(uj —6uf -uf +ujy)
Yos = % . % “uy - (5uy — 10uu? + uj)
Y6 = %A\/385~uz~uy~u2~(u§—u§)
Yor = é . %% “uy - (ug — 2udul — 3uf — 8uul 4 24uFul
Yog = 7vl2155-uz-uy-uz-(2ugfugfug)
Yog = 7%65 cuy - (ul + 2u§u?2! + uf/ — 12u2u? — 12u5u§ + 8ul)
Yao = Y .u - (15ud + 15ud + 8u + 30uuZ — 40u2u? — 40uu?)
Y31 7@;65 ug - (Ul + Qu%ug + ug — 12u2u? — 12u5u§ + 8u?)
Yo = v 14155 cuy - (2uu? — 2u§u§ —ud + uf!)
Y33 = % - % CUg - (Qu?cui + 8uZu? — 24u§u§ —ut+ 3u§)
Y34 = % V385 - uy - (uf — 6uZul + uy)
Y35 = % . % g - (ul — 10u2u§ —+ 5u§)
Y36 = % - %% “ug - uy - (3ud — 10u§u§ + Sué)
Yor = 2. wo% Cuy - us - (Sud — 10uZu2 + ud)
Y3s % VO ug - uy - (—ud + ufl + 10u2u2 — 10u§uz)
Y39 = % . \/%ﬂ Uy - ug - (—9ub + 3uf — 6uZu? 4 24uZu? — Sulu?)
Yio = % \/%ﬁ g - uy - (U 4wl + 16ud + 2uZu? — 16u2u? — 16uiu?)
Yy = Y ?3 cuy - us - (5ud + 5u§ + 8ul + 10u§u§ — 20u2u? — 20u§u§)
Yz = % - (16u8 — 5us — 5ug — 15u§u§ + 90utu? + 90u§u§ — 120u§u‘7f — 15u3u§ — 120u2ul + l80uiu§u§)
Yis = 7@)’ “Ug - Uy - (Bud + 5u§ + 8ul + 10u§u§ —20u2u? — 20u§u§)
Yie = 5 \/¥ (w8 — b +ubu? —wlu} — 16ulu? + 16uZul + 16uiu? — 16uul)
Yas % . \/132& g - us - (—3uf + 6uul + 8uFul — 24ulu? + Juy)
Yie = 13—6 V91 - (—ul + 5uiu§ + 10uu? + 5u§u§ —+ 10u§u§ — ug - 60u§u§u§)
Yar7 % . \/% g Uy - (ul — 10u§u§ + 5u§)
1 3003
Vie = b/ 8 - tsutud 1 1oudud - uf)

Table 2: Continuation of tablg. (To the author’'s knowledge no equations for higher values are published.)
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Example

V5 9 Here we give a trivial example for second—degree.
Yo = — - (3sin“¢—1) G _
2 First we recapitulate and set out the valueg,ofor second—
5
2 Y f
n Jn
= - ) @) Vi [y
Ys | yz
. . . . . Y 1
(Where equatiol shows its origins frond, whilst 7 is what Y6 s
we here term ‘equal powers’ which is convenient for manip- Y7 1
8

ulations used later.)

In performing calculations using,, one is forced to con-

sider whethen.,, u, andu. are independent. Three vari€xample —90°

ables are not required, as any position can be specified _ _ _

by two variable (e.g. (6, ¢)), but no two of (u,, u,, u.) For a90° roll then z in output signals, that is’, must be
is sufficient. Initially, in the calculations presented béeplaced byy in input signals, that ig. Likewisey’ is re-
low, one of the three squares was removed, eud.(as Placed by—z, and we might write:

u? =1 —u —u?). In practice no simplification results, as y o —z
zero-power terms (simple integers) appear on both sides of do— oy
the equation and the solution is the same. . =

e SoBj (the transformed,) will have z'y/, thatis—zz
the only input signal it can acquire: from is B~, and
it must be inverted.

3 GENERALISING

At the time of writing direction cosineH equations are only

published upto sixth degree (tabteand?2). They are (cur- ® B will have y'2’, that is—yz the only input signal it

rently very) tedious to work out. However if we ignogg
(andk,,) thenf,, does follow a pattern.

Upto sixth degree (and usingfor u,, etc.), this is shown

in table3.

The pattern is:

can acquireyz from is Bs, and it must be inverted.

e Bl willhavex’z’, that iszy the only input signal it can
acquirexy from is By.

e B} and B} remain respectively3s and Bg. (It can be
proved that they do not take part of each other’s sig-
nal, but suffice it here to say that we are only changing

lis . : . . .
signals withy or z in the f,, of their underlying SH.
odd even 'g W.I hy or 21 4 " ying )
m <0 andodd Uy Uy, So we can write:
and even| ug.uy.u., Ug Uy B
m >0 andodd Uy Uy Uy 8 Pl 8 01 8
and even Uy 1 00 1 0 0 ®)
or® 1 0 0 0 O
! m 00 0 0 1
1 | even| = Oand even which is the classi®0° roll matrix for second degree.
Uy, < 0 and odd
> 0 and even Condon-Shortley phase
ty <0 The Condon-Shortley phase occurs in some definitions of
u; || odd even the spherical harmonics, bubt in the definition used in
even odd ambisonics. Unfortunately some convenient, but in the

The parity ofmm and of the ACN are always the sartfe.

°In programming this is easily dealt with 4§, elsif, else
statements (see tisake subroutine in Ambisuitel[3], for example.)

10As s an integer, then eithéior I 4- 1 must be even, therefotél + 1)
must be even, anidl 4 1) 4 m (the ACN) must be even if is even, etc. Stein [L5] comments: It “is not necessary in the definition

final analysis inappropriate, software use this convention
and have littered ambisonic literature with erroneous re-
sults. The most frequent, perhaps, being transformations
that ‘pitch’ soundfields in the wrong direction. As Weis-
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m

6 5 4 3 -2 -1,0}]1 2 3 4 5 6
0 1
1 y | z | X
2 Xy yz| 1| xz 1

[ 3 Yy Xyz y | zZ | X zZ X

4 Xy yz xy yz|1l|xz 1 xz 1
5 y Xyz y Xyz y |z | X z X z X
6|xy yz xy yz xy yz|1l|xz 1 xz 1 xz 1

Table 3: The values aof,, for the first seven degrees of spherical harmonics.

of the spherical harmonics, but including it simplifies theulate for any degree, based on the relationship:
treatment of angular moment in quantum mechanics.”

It is a phase factor of- 1™, which for our purposes is equiv- R(o, 8,7) = Ra(a) x Ry(8) x Rx(7) 9)
alent to—1™ —wheren is theACN (see footnotd 0). That
is every other (every oddyH is negated. The effect on am-

bisonic signal sets is the same as invertingndy. Thatis _ R, (a+45) x Ry (90) X Rz (6+180) X Ry (90) x R (y+45) (10)
applying (or removing) this unwanted factor can be repre-

sented as: and his precalculated tabulations of pitchBs | for set an-
y = -y gles. The latter are publishe@d], with a more detailed
2 — oz explanation 21] of the above.
x — -z

The direction cosine method allows the generation of skele-
This digression should not have been necessary. The pttolo-matrices, and is offered here.

lems due to inappropriate tools are though too common
a note on both how to recognise them and how to cor
them may be of use to some readers.

aﬁgr third degree, the signal s& consists of channels
r?ﬁ\sz) 9 to 15, these, respectively, have ‘first part's that
containy, xyz, y, z, x, z andx, respectively.

For a270¢ pitch then:

4 USES .

Y

T 2 o~ =z

mirroring oo

So toflip (left-right) negate (inverse) all the channels Witnnplying our matrix must be of the form:
m < 0. To flop (front-back) inverse all channels that have

(I,m) that matchm is (< 0 and even) or% 0 and odd). x 0 x 0 0 0 0
To flop (up-down) inverse all channels that havemn) such 0 -« 0 0 0 0 O
that (odd, even) or (even, odd), thaf is m is odd. x 0 = 0 0 0 O
A flip followed by aflop (or vice versa —transformations 8 8 8 0 _O* 0 3
are generally not commutative, this is an exception) is * F

. o . . 0O 0 0 O * 0 =
equivalent to @ 80° rotation (ayawrotation). So channels 0 0 0 —% 0 —x 0

with f,, matching onu, oru, are inverted (the third, fourth
fifth and sixth in the list above). Those matching on bofherex represents a positive number (and indeed where the
u, andu, are inverted twice ... that is remain unchangegim of the squares of the values in each column and each

(seventh and eighth). The results of this operation can{y is one ... thus the value for column 2, row 2 must be
compared with standard published yaw rotation matrices_l)_

rotation Extending this to find the missing values, whilst interesting,
Determining pitch and roll matrices f@0° (or 270°) has IS futile' as Zotter's method can be automated, whilst this

proved difficult. A solution is due to be published (by Fran®€thod does not seem prone to automation.
Zotter). His method will allow an arbitrary rotation to any 11ope can tediously work out individual values (or at least some of

new position, using only yawdR(,), which are easy to cal-them), for example taking the middle row of thiex 7 matrix above:
Page 6 ofl3




dominance It will be obvious that

Dominance (Gerzon & Bartoril]) can be expressed by a D =csc(d)- L
transformation matrix:

The above matrices are based on thus published for FuMa
channel sequence, with the thought that these will be fa-

-1 -1
t+§71 : 371 00 miliar to most readers, but are valid irrespective of chan-
L — = =0 0 (11) Nel sequence —the direction of the dominance is all that
0 0 1 0 is affected. For a frontwards dominance, then wittN—
0 0 0 1 sequence, we wish to consider:
cscd —cotd 0 O
_ —cotd escd 0 O (12) 1 .O 0 —cosd
0 0 1 0 0 sind 0 0 (18)
0 0 0 1 0 0 sin § 0
—cosd 0 0 1

(For convenience these are expressed in SR3The up-
per form is the more usual. Their derivation and inte}“’]ese results are fairly trivial, but set out here as we will
conversion is described by Chapmah) return to dominance in greater detail in a later section.

The conventional form, does though lead to infinite am-

plitude levels, for some values. This may result in song@coding

‘clipping’ of the reproduced soundfield. Malhami{])

proposed the upper of the following two matrices (witBurse’s descriptior?f3] of some channels as “discarded am-
—1 > p > 1), which we rewrite in a geometric form (thebiguous harmonic”s (e.g3s when decoding to a cube) has
lower of the two). been the subject of discussion for some time.

Workers at Graz, with their interest in partial spheres have
also reviewed which channels are ‘redundant’ for some sit-

1 u 0 0 ;
w1 0 0 uations [L4, 22].
D = 0 0 1—pu? 0 (16) There are obvious parallels with the study here. Fidlise
0 0 0 1—p? reproduced from14] (and similar concepts are ). In
1 —cos§ 0 0 this figure all the channels that havén their f,, are feint.
_ —cosd 1 0 0 (17) However, as discussion about partial signal sets is currently
0 0 sind 0 very active, now is perhaps not the time to explore applying
0 0 0 sind the methods here to them. This should though be a fertile
; . area for the future.
B!, = —a.B13 + b.Bi5, or usingz, y, z for ug, etc.
(V7/2).2'(2(2")% — 3(2")? — 3(y")?) = —a.\/21/8.2.(42 — 2% —
y?) + b.y/35/8.x(z2 — 3y?) 5 EXTENDING TO ARBITRARY ANGLES

if we substitutez’ by z, etc., and simplify:

32(2\@*\/519*\/?:a)+y2(*3\/§+3\/5b*\/?j“)+(4‘/§a*3\/§) = The above discussion has been about utilising the symme-

For this to be true for alt, y, =: tries of spherical harmonics in relation to the, y— and
a=+/3/8andb = /5/8. z—axes. If the approach of substituting tof, u,, andu,, is
These values agree with Zotter's published tables. extended, but without consideration of symmetries a variety

127 formal account of normalisations schemes, etc. is given
Daniel[8]. For our purposes, here,

BNSD) _ . p(N3D) (13) The following discussion, is however limited to transforma-
tion matrices for plane waves.

i interesting results can be obtained.

wherel is the degree of the component, and

o =1/V2+1 14y Chapman & Cotterell4] state:
and has the convenience that (in SN3D) for a plane wave Proposition 1 Any valid ambisonic transforma-
0 3 8 tion must be valid for all possible ambisonic sig-
;(B“)Q - bz_:l(Bb)Z - ;(BC)Q =..=7 (15) nal sets, and therefore must be valid for an am-

bisonic signal set that represents a planewave.
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m=-4 m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3 m=4

o)

ove
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- @QUOCOO0VO
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Figure 2: A consideration ofH symmetries through the horizontal plane when designing hemi-spherical loudspeaker
rigs [14]. Graphic courtesy of an@ Sontacchi, Zotter & Héldrich. (Note the authors usfor degree, which in the body
of this paper id.)

For block diagonal sparse matrices (which all transform@/e present here a solution that is both remarkably simple
tion matrices, except dominance, appear to be) then a trgitsconception) and remarkably tedious (to execute).

formation may be reduced to: It is thanks to Franz Zotter that this is published here. In

an aside the author had stated that this was possible but

Uy, Uy “tedious” and as Zotter was working on an automatable
u, | =1 * x * | x| u (19) method* there seemed little point pursuing this approach.
u, Ug His curiosity and prompting led to this (more) formal note.
With hindsight, there are places for algebraic/geometric so-
5.1. Rotation lutions as against numeric ones —not least if it is desired to

5.1.1 A historical note on rotation matrices for higher apply a progressive rotation to a soundfield.

orders It seems likely that the method can be extended to arbitrary
higher degrees. Though, for the reasons in the previous
The history of spherical harmonic rotations would be a fasaragraph, no attempt has been made to prove that this is the
cinating one. Here a few reflections are given as to rotatiarese (considering, for example, the number of simultaneous
in ambisonics. equations, variable, ..., for an arbitrary degree matrix).

Spherical harmonics were developed in 1784 (Laplac&he position in 2003 is well summarised by Malha2d]f
The work of Gegenbauer in the late Nineteenth Cen-
tury (see B]) allowed for hyperspherical harmonics of
dimensional universes, but ... as recorded below, in 2003
Malham was reporting his unsuccessful attempts at advanc-
ing SH rotation beyond second—degree. It would be inter-
esting to know whether other SH users had no use for rota-
tion and thus the matter was of little concern, or, if not why
this area was so empty.

Since, starting with second order, the harmonic
shapes involved in either tilt or tumble are no
longer simple, generating the matrices involved is
not trivial. Deriving the second order matrices is
not too difficult, although it does require a signif-

icant amount of manipulation of trigonometrical

equations to arrive at the results given in Furse
or Daniel. However, third and higher order har-
Even now, the previous absence of solutions to this problem monics is “a rather intricate task”, to quote a web
is not as widely known as it ought to be (and now with solu- page (...) related to the European Union Sim-
tion probably never will be!). Many users have practically ilugen Esprit Open Long Term Research project
either not got beyond second order, or not gone beyond pan- (...). Inthis project they have investigated the use
thophony, or just not felt the need for non-yaw rotatidhs.

surprised to hear that there was a problem.
13As this paper was being drafted, one knowledgeable ambisonist wa¥'see: previous section of this paper
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of spherical harmonics for defining directional il-  Itis a trivial rewriting, but to maintain consistency with the
lumination of visual rendering systems, a clearly  earlier part of this paper, these may be stated as:
related task. They note that no solution to the

. . . yaw

problem of simple generation of the required ro-

tational matrices had been found in 1995, but that Yy — yatzp
this had been solved by 2000, the date of the web 2 e z
page. Unfortunately they give no further details, '~ r-ay-f
either on the web page or in the publicly avail-  pjtch

able documentation from the project. However, ,

a search of the literature in another field which vy = Yy
uses spherical harmonics extensively, Chemical =T Eam s
Physics, yielded a paper by Choi, Ivanic, Gordon — zatzf

and Ruedenberg, (Choi et al, 1999) which gives a roll

stable rgcursiv_e formula for rotations of spherical y — y-a—=z-8
harmonics which appears to be adaptable to the Y — zoa+y-B
conventions used in Ambisonics. Work is ongo- J T
ing to apply this to software capable of working

at arbitrary order. wherea = cos(v) andg = sin~.

What interest there has been in rotation, has certaifty- S€cond degree rotation

been shared (as Malham indicated) by our colleagues Tiere are well accepted matrices for arbitrary second de-

terested in lighting and shading for virtual images. Gregjee yaw, pitch and roll. See for example Malhats][or
(2003, [L6]) in a very readable introduction to this applicapaniel [12).

tion states thasH lighting was only introduced the previous . _ .
yeat®. He discuses rotation (pages 21-26 and 46-47) Jdiough care must be taken with matrices from the literature

least detailing personal communications with Choi (inclt;g-) detgrmlne whether a (?0‘”‘?'0”,'5*‘0”'93’) phase error has
ing the latter's famous “Complex makes life easier! ” co een introduced (usually in “pitch).

ment (p.26)). Pinchon & Hoggar$] made an interesting

proposal in 2006, but the present author was not able to i V.1 Higher degrees

plementit. Instead the method presented here —if it is valid—

uses naive elementary algebra (including the avoidancquF a plane wave:

complex numbers). It is not though, without its disadvan-

B,=Y,S8 (23)
tages.
wherei is the input signal.
5.1.2 First degree rotation To determine the third—degree block of the pitch matrix
(which is a sparse matrix). Then for each Bf to B/,
The classic rotation matrices are: we could write:
15
COS(’Y) 0 Sln(’Y) B; = Z 6Ln,o'-Bn (24)
Rz,l:l(ly) = 0 1 0 (20) n=9
—sin(y) 0 cos(7) 15
Vi = Y noYnS (25)
1 0 0 n=9
Ryi=1(7) = 0 cos(y) —sin(y) (21) 15
0 sin(y) cos(v) Y, = Z Gn,o-Yn (26)
n=9
cos(y) —sin(y) 0 N ; o ich. and thus:
Rx,l:l(")/) — sin(v) COS(’}/) 0 (22) ow, our transformation is a pItC , and thus:
0 0 1 y Yy
Z —  z.cos(y) — x.sin(y)
That isyaw, pitchandroll respectively. ¥ — z.cos(y) + z.sin(y)
15attributing the advance to Sloan, Kautz & Snyder which we may rewrite as:
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Yy = Y

7~ za-—-uz(

¥ — za+z
for convenience.
Substituting inBj to B{; and takingS = 1 (this is just
for convenience as if we ugat appears on both sides of a

later equation, and cancels out), then we obtain the result$)
in table5.2.1

If we take B{, as an example, by inspection we can write

Y1/2 = 0}/9 + O.Yl() + 0.Y11 + a.Y12 + b.Y13 (27)
+c.Y14 +d.Y15 (28) B,
= G,.Y12 + b.Y13 + C.Y14 + d.Y15 (29)

The above is the equivalent of equatid@, but as we are
considering only one row we have simplified the matrix el-B11
ement values (using. . . d). We have also said that the first
three elements in this row must be zerB;{ is of the form

ez’ + fa?z + gxz® + haad + i.x + j.z and there is no

way that By to Y7; can contribute towards that. (Assign-

ing matrix element values to the first three elements of th%i
row, would result in them being determined(dater, and a
doubtful reader may expand the technique below with them
and observe that happening . ...))

Generalising the above paragraph we may write the whoI%,
matrix block as:

!
14
(30)
Bis

Upto this point, this approach seems susceptible to automa-
tion. Solving the resulting equations (an example foIIow§_)
does not, at first sight, seem to be (though the author mak
no claim to expertise in computational algebra software)

Now we may rewrite equatio?9 as

2(5(2")%2=3) = a.=x(522-3)+ b,z\//i(Szz — 1) + c.2vVIB(2? — y2)31)

,7

+d. 1‘\/ (1‘ —Sy ) (32)
= ... (33)
I3 [5 .
- w(—b.\///— —d,S\/*)#»z(.,.)+:L“3(...)+23(...) (34)
2 2
42z2( ) + 222(c.2v15) (35)

We now turn to the left hand side. For a pitch we may write:

yoo— y
2 —  z.cos(y) — z.sin(v)
x.cos(y) + z.sin(7)

'
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VEY BE? - ))
\/%y(Z%(:COHrZﬁ) (¥)?)
\/% (2?y(30?) + y2*(34%) + wyz(603)
+y*(~1))
V105.2" .2’y
V105.(z.a — 2.8).(z.a + 2.08).y
V105.(zyz(a? — 52) + 2%y(—aB) + y2%(af))
¢%@mazf—n
\/%Ty(f)(za—ﬂcﬂ) -1)
B y(55) +y2250) + 205(-1005)
+y(-1))
VL2 (5(2')2 - 3)
(20— 2.0).(5(z.0— 2.0)? = 3)
S (2(50%) + 2%2(150/8%) + 22%(~1507)
+23(=50%) + x(30) + 2(—3a))
. .(6(z) - 1)
T(a+2.0).65(z.a—xp)-1)

=] .
o
(o3

(@) = (y')?)
(z.a—2.8).((v.a + 2.8)? —

=N
o
Cn

(v)?)

N

w
[S28

2 ((2')* = 3.(y)?)
(z.a+ 2.08).((z.00 + 2.8)% — 3.42)

oo‘g oo‘

Qle 4: Values ofBj to Bj; for an arbitary pitch, ifB

S a plane wave. For convenience tinput signalof the
‘plane wave §) is here taken to be (for arbitary values of

1 then each of the above values needs multiplyingsl{as
the values derived above are used in situations wHeit
used, would cancel out, this approach (slightly) simplifies
the equations!)).
‘equal powers’ (see introductory text of this paper) would
also make the above simpler.)

(Expressing the spherical harmonics in



We can writez’ = a.x + .z, wherea = —sin(y) and
3 = cos(y) and obviously? + 3% = 1.

We may rewrite the LHS of equati®b as follows:

(2/)(5(2')* - 3) (.z+ B.2)(5(a.x + .2)? —(3B)

5.3. Dominance

For dominance (in SN3D) we have (usiiiy) from above
(matrix 18)):

= .. (37) B'=DxB (59)
_ _ 3
= 33a> 2 '2') Farl) (38) and we may write, for a plane wave:
+2°() +aze(.)) (39)
+2%2(15023) (40) Bg S
As these equations must be true for anyfall, z (with the | B | | z-S
proviso that:? 4 y2 4 2% = 1 always) then we may write: Bs x-S
3 )
= (42)
= .. (43) gé 'S/s'
_ r_ 1 _ Yy -
— (44) B = B |=| »s (61)
cee = L (45) B, 2. S
c2V15 15024 (46)
Thus:
From which it follows that:
a = B(2-5a?)/2 (47)
/ = —_ .
b = /3/804(4*502) (48) / S/ = S(]. x 0085) (62)
J - 5/80° (50) 2 -8 = z-sind-S (64)
B -8 = S(z—-cosd) (65)
or
@ = cos(7)(2 - Bsin’(7))/2 (51) Substuting .
b = —+/3/8sin(y).(4 —5sin’(y))  (52) T 17 coss (66)
¢ = (V15sin’*(y)cos(v))/2 (53)
_ 3
d = —/5/8sin’() (54) s o
As ever, asin’(y) + cos?(y) = 1, these can be written in 1 —a-cosd
a multitude of variants. g o_ . Sn J (68)
. 1—2x-cosd
Puttingy = 270°, then:
, T —cosd (69)
a = 0 (55) v 1—x-coséd
b = —/3/8 (56)
c = 0 (57) Now we can, in principle, go ahead and substitute to deter-
mine higher order dominance matrices.
d = +/5/8 (58)

This approach is faced with two problems.
Whereas Zotter has irRy90 03 (Zotter uses clock-
wise rotation) 0.0000000e+00 -6.1237244e-01
0.0000000e+00 7.9056942e-01 , which is in agree-
ment.

1. Whilst it is possible to generate a signal set with ap-
plied dominance for a plane wave, to do so one needs
(Szyz). One can determinB from (Szyz), butnot
the inverse?®

(It is intended to publish a set of transformation oo — - -
. . . This involves dividing one audio signal by another, and audio signals
matrices in acn order17], after this conference.) frequently pass through zero: see this lecture’s slides for n example.
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2. Whilst one can produce a dominance transformed sig-

1
In reality applying this method results in transformation m%I

nal set B’) of any order fromSxyz) there is no proof

audio3D/downloads/
These.pdf )

that one can do so for a non planewave. This mod&D] Daniel [9], egn. 3.8, at p. 150.

might produce a methaifl the quest was not futile.

[11] Daniel [9], page 151.
2] Daniel [9], page 165.
3] Ambisuitehttp://ambisuite.sourceforge.net/

trices which are not linear. Divisions y— z - cosd, @ven [14] Alois Sontacchi, Franz Zotter and Robert Haldrich,
if they were valid are in practice impossible
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(a) x (d) (f) zonal harmonics (m = 0)
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b))y (g9) sectoral harmonics
(m = =l)
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(¢c) z (e) neither x nor y nor z (h) tesseral harmonics

(d) depicts the empty grid. Columns are degree, that is [ = 0 to [ = 6. Columns are degree, that is m = —6 to
m = 6.

(a), (b), (c) depict spherical harmonics where f,, contains z, y or z respectively. (If, for example f,, = z -y then
the SH will be indicated in both (a) and (b).

(e) depicts spherical harmonics where f, = 1.

For comparison the clessification into zonal, sectoral and tesseral harmonics is shown in (f), (g), (h).

Figure 3: Graphical rendering of Table 3, with the addition of classification of SHs into zonal, sectoral and tesseral.
Subfigure(c) gives the same information as Figure 2.
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