
AMBISONICS SYMPOSIUM 2009
JUNE 25–27, GRAZ

TOWARDS A COMPREHENSIVE ACCOUNT OF VALID AMBISONIC
TRANSFORMATIONS

Michael Chapman1, Philip Cotterell2

1 01350 Culoz, France (chapman@mchapman.com)
2 London (philip.cotterell@macace.net)

Abstract: The classic ambisonic transformations of amplitude scaling, rotation, and mirroring are well known. Their
validity can be established by an algebraic analysis of transformation matrices.
Gerzon and Barton [1] used such a technique to demonstrate the validity of the first-order ’dominance’ transformation.
The search for a transformation similar to dominance but applicable to higher-order signal sets is ongoing. Cotterell [2]
published a numerical proof that a second-order dominance operation corresponding to Gerzon and Barton’s Lorentz
transformation is impossible.
Chapman [3] inverted Gerzon and Barton’s algebraic method to prove that the only valid first-order transformations are
amplitude scaling, rotation, mirroring, and dominance.
In this paper the authors generalise this latter approach and apply it beyond first-order pantophonic matrices, proposing
a generalised and extensible approach to the search for ambisonic manipulations.
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1 INTRODUCTION

Ambisonics provides a full sphere (or full circle) represen-
tation of a soundfield. It is therefore not surprising that the
soundfield can be rotated. Such rotations are generally ex-
pressed as transformation matrices that can be applied to
an ambisonic signal set (B) to produce the required trans-
formed signal set (B′).

It is tempting to presume that rotation is the only possi-
ble transformation. However in 1992 Gerzon & Barton [1]
demonstrated that ’dominance’ (a morphing of the sound-
field by a Lorentz transformation) was both possible and of
great utility.

We set out here to rigourously explore what valid transfor-
mations exist.

By a valid transformationin this context we mean a trans-
formation which can be applied to any B–format3 signal set

3See next section for definition.

and which acts on the encoded sound field in such a way
as to modify the spatial properties of that sound field —in
the case of a simple synthetic sound field consisting only
of plane waves, this is equivalent to altering the direction
of incidence of (at least some) of those waves. We do not
consider either amplitude scaling of the encoded sound field
as a whole or filtering operations which act on the timbral
characteristics of encoded sounds to be transformations in
this sense.

2 AMBISONICS

There is no universally agreed notation for ambisonics, and
so we set out here the notation used in this paper.

Ambisonics is based on a spherical harmonic description of
a soundfield. It is universal that ambisonics uses a set of
axes such thatx is to the front of the listener,y to the left,
andz is upwards. Azimuth is measured fromx (0o), such
that due left is at90o, etc. Elevation is measured from the
horizontal plane, with positive values for directions above
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the plane. We denote azimuth byθ and elevation byφ:

0 ≤ θ < 360o (1)

−90o ≤ φ ≤ 90o (2)

Any spherical harmonic can be expressed as a function of
(θ, φ). Alternatively they may be written in terms of the
‘direction cosines’.

ux = cos φ · cos θ (3)

uy = cos φ · sin θ (4)

uz = cos φ (5)

(The direction cosines are the projections onto the coordi-
nate axes of a unit vector pointed in the direction(θ, φ).)

The Condon-Shortley phase [4, 6] convention is not used in
ambisonics.

Spherical harmonics are described by their degree (l) and
their order (m) in that degree. TheSH order should not be
confused with ambisonic order (see below). Each spherical
harmonic may then be designated byY m

l wherel andm are
integers, and:

l ≥ 0 (6)

−l ≤ m ≤ l (7)

A particular spherical harmonic may be denotedY m
l . For a

given degreel, there exist2l+1 spherical harmonics; the to-
tal number of spherical harmonics of all degrees up to some
particularl is (l+1)2. Theorder of an ambisonic signal set
is equal to the highestdegreeof spherical harmonic needed
to describe the signals it contains.

A particular signal within an ambisonic signal set may be
denotedBm

l , paralleling theY m
l notation for spherical har-

monics. However, it is often convenient to have a single
unique integer to identify each signal or spherical harmonic.
For this purpose theambisonic channel number(ACN):

n = (l + 1) · l + m (8)

may be used. We may then simply write

B = (B0 B1 B2 B3 . . .) (9)

An ambisonic signal set need contain onlyB0. It would
then be described as being of zero–order. It would in fact
be one audio channel of omnidirectional mono. As each

further degree is added greater spatial resolution is recorded
in the ambisonic signal set.

Spherical harmonics are normalised for most usages. That
is there values are adjusted by a constant. Regardless of
normalisation theSHs in any given degree have the same
values relative to each other. Here (unless stated otherwise)
we used full normalisation (or N3D: N for ‘normalised’,
3D for ‘three dimensional’). In consequence the sum of
the squares of theSHs within any degree is equal to their
number, that is:

l∑
m=−l

(Y m
l )2 = 2l + 1 (10)

A comprehensive list of spherical harmonic equations (upto
eleventh degree) is published on the Web [5] and Chap-
man [6] reproduces direction cosine forms upto sixth de-
gree, in these proceedings, as background to a discussion
of their symmetry. The higher values in both sets are the
work of Philip Cotterell. To ensure no ambiguity in the
above definitions, we give a few early values, here, in ta-
ble 1. (It should be noted that many publications substitute
(1/2) sin(2θ) for sin θ · cos θ, etc..)

2.1. Two dimensions

It is possible to use circular or cylindrical harmonics to rep-
resent a soundfield without any height information.4 Such
signal sets are often described aspantophonic(as against
periphonicfor three dimensional sets).

It is also possible to have mixed order sets (where the lower
degree(s) are periphonic and the higher degree(s) are panto-
phonic). These provide greater spatial resolution for sounds
in the horizontal plane, and a more limited resolution of
‘height’.

As these are both sub-sets of a full periphonic signal set they
are of no relevance to the discussion of transformations that
follow.

For completeness though, each pantophonic degree con-
tains only two channels, these areB−l

l andBl
l (the signals

related to the sectoral spherical harmonics). So if the entire
set is pantophonic the channel count is2l + 1.

Classical mixed order sets can be described inMalham no-
tation, so that –for example– a fifth order signal set, with
the lower three orders in periphony and the upper two pan-
tophonic would have the notationfffhh (f for ‘full’ and h for
‘horizontal’).

4The nuances of such models do not concern the subject matter of this
paper. Whether one needs infinitely long loudspeakers does not effect the
mathematics here . . .
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Y0 = 1 = 1
Y1 =

√
3 · cos φ · sin θ =

√
3 · uy

Y2 =
√

3 · sinφ =
√

3 · uz

Y3 =
√

3 · cos φ · cos θ =
√

3 · ux

Y4 =
√

15 · cos2 φ · sin θ · cos θ =
√

15 · ux · uy

Y5 =
√

15 · sinφ · cos φ · sin θ =
√

15 · uy · uz

Y6 =
√

5
2 · (3sin2φ− 1) =

√
5

2 · (3u2
z − 1)

...
...

...

Table 1: The early spherical harmonic equations used in ambisonics. In N3D. (Table2 can be used as a concordance
betweenYn andY m

l namings.)

FuMa ACN (l, m)
W B0 B0

0

X B3 B1
1

Y B1 B−1
1

Z B2 B0
1

R B6 B0
2

S B7 B1
2

T B5 B−1
2

U B8 B2
2

V B4 B−2
2

K B12 B0
3

L B13 B1
3

M B11 B−1
3

N B14 B2
3

O B10 B−2
3

P B15 B3
3

Q B9 B−3
3

Table 2: Concordance between FuMa channel letters and
ACNs. TheBm

l notation is also shown. There are no FuMa
designations beyond third–degree.

2.2. Furse–Malham ambisonics

Previously ambisonic signal sets have used the FuMa
scheme. This gives letter codes to the first sixteen possi-
ble channels and applies ‘weightings’ rather than normali-
sations to them.

We give a concordance for channel names in table2, the
scheme though having elegance lacks extensibility and is
not used here. A full description can be found in Mal-
ham [7] and a recent very brief history in (section 2 of) a
paper to this conference [8].

2.3. Other normalisation schemes

Other normalisation schemes exist for spherical harmonics,
(see Daniel [9]) of which the commonest is probably semi–
normalisation (in three dimensions SN3D).

For semi-normalisation:

l∑
m=−l

(Y m
l )2 = 1 (11)

which with equation10gives the relationship:

Y
m(SN3D)
l =

1√
2l + 1

Y
m(N3D)
l (12)

The same relationship holds true for signals, so that:

B
m(SN3D)
l =

1√
2l + 1

B
m(N3D)
l (13)

All such normalisationsschemes preserve the relative am-
plitudes of channels within thesamedegree. Thus for
sparse matrices (see below), such as rotation matrices, then
normalisation is not relevant.

For a non-sparse matrix, such as Gerzon & Barton’s dom-
inance, then any such matrix is specific to one particular
normalisation.

Note that FuMa uses ‘weightings’ not normalisation and
thus the above does not apply to such sets (except for zero–
and first–degree elements).

3 PLANEWAVES

An ambisonic representation of a planewave is created by
having each channel contain a signal that is the product of
the relevantSH and the ‘input signal’:

Bn = Yn · S (14)

whereS is the input signal –a mono audio signal.

Planewave signal sets provide useful minimalistic examples
for analysing transformations.
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Proposition 1 Any valid ambisonic transformation must be
valid for all possible ambisonic signal sets, and therefore
must be valid for an ambisonic signal set that represents a
planewave.

Obviously the converse need not necessarily be true.

4 ORDERS

Proposition 2 Any valid ambisonic transformation must be
capable of being truncated so as to be applicable to the next
lowest order.

Though we know of no way to prove the following, it does
seem axiomatic that all valid transformations apply to first–
order signal sets, that is:

Proposition 3 The only valid transformations are transfor-
mations that can be performed on first–order signal sets.

5 APPLICATION TO TRANSFORMATION
MATRICES

From the above three axioms then if we investigate the pos-
sible transformation matrices for first order signal sets we
will have a complete set of possible transformations.

The well known rotation matrix is first cited as an example:
1 0 0 0
0 cos(α) − sin(α) 0
0 sin(α) cos(α) 0
0 0 0 1

 (15)

is a rotation about an axis of an angleα.

It is a block diagonal sparsematrix (see p.21 of [10]), that
is a matrix of the form:

∗ 0 0 0 0 0 0 0 0
0 ∗ ∗ ∗ 0 0 0 0 0
0 ∗ ∗ ∗ 0 0 0 0 0
0 ∗ ∗ ∗ 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗


(16)

The horizontal and vertical lines in the above are purely for
readability (they divide the matrix elements into degrees).
We are, here, only interested in first order matrices, but a
second order example is given to make the pattern clear.

Each part of such a matrix (as delineated above) is referred
to as a ‘block’. It is possible to refer to such a block, by
a notation such asTl=1 for the first degree block (see [9],
page 165).

5.1. Sparse first-order matrices

We can write a generalised sparse first-order transformation
matrix as:


B′

0

B′
1

B′
2

B′
3

 =


1 0 0 0
0 a b c
0 d e f
0 g h j

×


B0

B1

B2

B3

 (17)

Now for a planewave

l∑
m=−l

(Bm
l )2 = (2l + 1)(B0

0)2 (18)

which is an ugly way of saying the sum of the squares
of the spherical harmonics in any order equals their num-
ber (for N3D). It applies to signals in a signal set only for
planewaves, as for a planewave the input signal (S) in equa-
tion 14cancel out.

Writing the individual values for equation17gives us:

B′
0 = B0 (19)

B′
1 = a ·B1 + b ·B2 + c ·B3 (20)

B′
2 = d ·B1 + e ·B2 + f ·B3 (21)

B′
3 = g ·B1 + h ·B2 + j ·B3 (22)

Whilst equation18gives5 us:

3(B′
0)

2 = (B′
1)

2 + (B′
2)

2 + (B′
3)

2 (23)

3B2
0 = B2

1 + B2
2 + B2

3 (24)

Combining equations19 to 24and simplifying, gives:
B2

1 + B2
2 + B2

3 = (a · B1 + b · B2 + c · B3)2 + (d · B1 +
e ·B2 + f ·B3)2 + (g ·B1 + h ·B2 + j ·B3)2

or:
B2

1(1− a2 − d2 − g2) + B2
2(1− b2 − e2 − h2) + B2

3(1−
c2− f2− j2)− 2(B1B2(ab+ de+ gh)+B1B3(ac+ df +
gj) + B2B3(bc + ef + hj)) = 0

Now this must be true whenB2 = B3 = 0, that is

a2 + d2 + g2 = 1 (25)

and likewise

b2 + e2 + h2 = 1 (26)

c2 + f2 + j2 = 1 (27)

5For those readers trying to reconcile this with SN3D or first-order
FuMa: the equation is the sameexceptthere are no ‘3’s —these cancel
out in the next few lines anyway.
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Substituting these back in the original equation, gives
B1B2(ab + de + gh) + B1B3(ac + df + gj) + B2B3(bc +
ef + hj) = 0, which must be true if only one ofB1, B2 or
B3 is 0. So we may write

ab + de + gh = 0 (28)

ac + df + gj = 0 (29)

bc + ef + hj = 0 (30)

Now:

Proposition 4 Every transformation matrixT must have
an inverseT−1, more simply stated it must be possible to
‘undo’ any transformation.
(With the obvious exception that amplitude scaling to0 re-
sults in an irrecoverable signal set(!!).)

The caveat does not apply in this case (as there is no ampli-
tude scaling, that is:B′

0 = B0).

Rewriting equation17as

B′ = T×B (31)

then elementary mathematics gives us:

T−1 =


1 0 0 0
0 a d g
0 b e h
0 c f j

 (32)

Repeating the operations above forT−1 will give us:

a2 + b2 + c2 = 1 (33)

d2 + e2 + f2 = 1 (34)

g2 + h2 + j2 = 1 (35)

and

ad + be + cf = 0 (36)

ag + bh + cj = 0 (37)

dg + eh + fj = 0 (38)

This may be summarised as:

Proposition 5 For a sparse first order transformation ma-
trix, the sum of the squares of the elements in each row of
each block equal the sum of the squares of the elements in
each column of each block equal one.

and

Proposition 6 For a sparse first order transformation ma-
trix, for any two rows (or columns) the products of the two
elements in the same column (or row) when summed equal
zero.

(We offer no proof that this applies to the zero-degree
block.)

This fits with common experience (e.g. matrix15).

Now, the number of variables in equations of the forma2 +
b2 = 1 can be reduced by writinga = sinα andb = cos α,
assin2 α + cos2 α = 1 always for any value ofα.

For the three dimensional situation, we can write6:

1 = a2 + b2 + c2 (39)

= sin2 α + cos2 α((b/ cos α)2 + (c/ cos α)2)(40)

= sin2 α + cos2 α((b′)2 + (c′)2) (41)

= sin2 α + cos2 α · sin2 β + cos2 α · cos2 β (42)

Now we can start simplifying7 T:

T =


1 0 0 0
0 sinα cos α · sinβ cos α · cos β
0 cos α · sin γ e f
0 cos α · cos γ h j


(43)

which reduces the variables from nine to seven.

Simplifying further is an ongoing project. It seems probable
that a simplification to four variables is possible. Obviously
there must be at least three variables to allow for yaw, pitch
and roll (for which a matrix can be generated as the product
of the three individual matrices). Perhaps a fourth variable
is necessary to accommodate mirroring (which is afterall
just a rotation through a higher dimension) . . .

5.1.1 Caveat

Though the above is not as complete as we would wish, it
can be applied to a pantophonic matrix (or to a periphonic
matrix where we fixB′

2 = B2).

It will be seen that matrix15 is a valid solution. It will
also be seen that there are trivial variations on this solution,
which result for example in backwards rotation or rotation
with mirroring. Even with those variations it does not mean
that this is the only meaningful solution.

The simple matrix for reflection through the planeθ = α

6It is no coincidence that these algebraic formulæ are identical with
those for the spherical harmonics!

7The authors would be surprised if this process has never been done
before. However they remain surprised that from 1784 to 2008 there were
no published ‘pitch’ and ‘roll’ matrices (see [6] for the brief history) for
third degree and above. They would be grateful to be informed of any prior
work.
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(or, in two dimensions, a line):


1 0 0 0
0 − cos 2α 0 sin 2α
0 0 1 0
0 sin 2α 0 cos 2α

 (44)

satisfies the above conditions. It can be derived from more
simple rotation matrix:

If one yaws the soundfield so that the plane one wishes to
reflect/mirror through is the plane of thex− andz−axes:


1 0 0 0
0 cos−α 0 sin−α
0 0 1 0
0 − sin−α 0 cos−α

 (45)

=


1 0 0 0
0 cos α 0 − sinα
0 0 1 0
0 sinα 0 cos α

 (46)

If one then mirrors through that plane


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

×


1 0 0 0
0 cos α 0 − sinα
0 0 1 0
0 sinα 0 cos α


(47)

=


1 0 0 0
0 − cos α 0 sinα
0 0 1 0
0 sinα 0 cos α

 (48)

And then yaws the plane of reflection back to where it was:


1 0 0 0
0 cos α 0 sin α
0 0 1 0
0 − sin α 0 cos α

×


1 0 0 0
0 − cos α 0 sin α
0 0 1 0
0 sin α 0 cos α


(49)

=


1 0 0 0
0 sin2 α− cos2 α 0 2 sinα cos α
0 0 1 0
0 2 sinα cos α 0 cos2 α− sin2 α

 (50)

=


1 0 0 0
0 − cos 2α 0 sin 2α
0 0 1 0
0 sin 2α 0 cos 2α

 (51)

5.2. Non-block diagonal sparse matrices

These present significantly more variables. Comments are
made below on simplifying and considering only the panto-
phonic case.

Dominance [1] is well known and is quite probably unique
(if one includes the variants of with/without mirroring and
‘un-dominance’).

Another paper to this conference [6] analyses creating
higher order planewave files that have had a dominance ef-
fect applied to them (which is possible) but demonstrates
the impracticality of creating a dominance-transformed
higher order file —even for a planewave, unless the source
material is available. Indeed the same problem occurs if one
merely tries to recreate(Suxuyuz) from a planewave file.
(Put in the most basic terms there is a need to divide one au-
dio signal by another. Easily achieved, but as audio signals
tend to pass through0 hundreds or thousands of times per
second the results are unuseable.)

6 DIRECTION COSINES

Transformation matrices for ux, uy and uz.

Taking the above propositions to their logical extreme then
all block diagonal sparse transformation matrices can be
expressed as simple3 × 3 matrices forux, uy anduz (or
generalizing as an × n matrix for u1, u2 . . .un for a n–
dimensional soundfield).

 u′y
u′z
u′x

 =

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

×

 uy

uz

ux

 (52)

See the next section.

7 DETERMINING THE ELEMENTS FOR
HIGHER DEGREES

Chapman [6] proposes a method for determining the ele-
ments of the blocks of a transformation matrix for situations
where the above (first degree block) matrix is known.

If Proposition 3is valid and there are no unforeseen prob-
lems with Chapman’s method, then matrix blocks for all
higher degrees can be determined (certainly for block diag-
onal sparse matrices, but the method may be extensible to
other matrices if any valid ones exist).

8 DIMENSIONS OTHER THAN THE THIRD

Our discussion has concentrated on three dimensional trans-
formation matrices, as real soundfields are three dimen-
sional. We will though make a few remarks on other di-
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mensions: Both for completeness, and because pantophony
is so popular in ambisonics.

8.1. Zero dimensions

A zero dimensional spherical harmonic decomposition of
a soundfield has only one channel. Except for amplitude
scaling, no transformation is possible.

8.2. One dimension

Has not been considered.

8.3. Two dimensions

The pantophonic case is both mathematically more interest-
ing and practically more relevant.

Applying the above methods it can be shown that the only
sparse matrix solution is that of rotation. That is the trunca-
tion of matrix15, or its variants (including mirroring).

The non-sparse case was considered by Chapman [3] for
variations in one of the first degree signals. To analyse
the situation where both first degree signals are transformed
leads to a similar situation to the analysis of matrix17. Ob-
viously there are valid solutions as dominance at towards an
arbitrary angle is possible. It seems unlikely that solutions
other than dominance are possible, but it would be useful to
prove this.

8.4. Four and higher dimensions

The above methods can be applied to higher dimensional
situations. The same generalities apply. The number of
variables become significantly larger . . . . It does not seem
impossible that the solution to these equations has not al-
ready been determined.

9 CONCLUSIONS

We see two areas where our studies need extending, so as
to enable a “comprehensive account”.

Firstly a solution to matrix17. It seems unlikely (but not
impossible) that this does not already exist in the literature.
The present authors have not though been able to locate
such work.

Secondly, the greater challenge of non-block diagonal
sparse matrices need addressing.
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