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Abstract: We introduce a new class of 3D microphone arrays that use symmetrical arrangements of tangential velocity
sensors. Use of velocity sensors allows these arrays to recover spherical harmonics of a given degree with less low-
frequency boost than when using pressure sensors only. As an example we present a symmetrical array of twelve
velocity sensors that resolves the eight harmonics of degrees 1 and 2. A second-order spherical microphone can now
be constructed by combining this array with one or more pressure sensors that provide the missing harmonic of
degreeO.
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components (“X”, “Y”, “Z"), we know of no physical
1 INTRODUCTION principle that directly retrieves a spherical hanigoof

. L . . .. second or higher degree.
Following its invention in the 1970s, the Ambisonic

Soundfield Microphone [1] was for many years théyon A method of obtaining a second order response by
microphone capable of single-point 3-D capture of €ifferencing the outputs of two closely-spacedtiosdier
sound field, and then only with first order directal Sensors was disclosed in Blumlein’s 1936 patent [je
resolution. Recently there has been much inteirest differencing incurs a 6dB/8ve loss of low frequesci
producing a second-order or higher-order successs however, thus requiring bass boost in an equafsteswn

for examp|e [2], [3]' [4], [5] and [6]), several tfe recent as a passive shelf filter in Blumlein’s patent).

designs being based on a 1975 paper by Gerzoniehw the Bjymlein Difference Technique’ can be applied

proposed spherical arrays of microphone capsules {gheatedly but each time the order of responseigased
sample the sound field at points arranged in a goQg one, a further 6dB/8ve boost is needed. Thisite
integration rule’ on the sphere. applies equally to the capsule arrays considered by
However while mathematically elegant, there appedre Blumlein and to the spherical arrays that have been
practical difficulties in implementing the ‘intedian rule’ ~ considered recently.

approach. After explaining some of the problems, Wrpg integration rule” principle as given by Gerzff
propose the use of dlpélesen_sors mounted tanger_mallyCan be summarized as follows. The outputs of aripil
on the surface of a sphere, in order to recovet 8nd 5oy of pressure sensors are firstly given a wizighas
higher degre® spherical _harmonics. = We present andh oscrined by the integration rule. (The weightsrbe
analyse several symmetrical arrays of this type. all equal in the case of a completely symmetricehya)
A degree zero (“W") directional output is obtaingthply
2 ENHANCING DIRECTIVITY by taking the sum of the weighted sensor outpufs.
harmonic output of first or higher degree is oledirby
A fundamental problem that besets the designerhifla applying to each weighted sensor output a further
order microphone is that while pressure sensorsiggo weighting proportional to the value of the harmoaidhe
the zero-degree component (“W”) of a sound fieldd a sensor, before summing the weighted sensor outfiitis
velocity sensors can provide the three first degregill produce an output having the correct direcitity
(subject to the integration rule being good enouigim
deficient in bass. Anth degree harmonic obtained in this
1_Also known as “velocity”, “pressure gradient” dfigure-of-  way requires equalization (bass boost) of, asyrigatby,
eight” sensors. 6xn dB/8ve. Figure 1 (taken from Gerzon [7]) shows a
2 We use the term “degree” in relation to an inditl Signal processing structure for a first-order nutrone,
harmonic, and “order” to refer to the maximum degref the “Matrix” implementing the weighted summations
harmonic that is retrieved by a microphone that metyieve referred to above.
harmonics of several different degrees.
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where the Laplace transform variable is scaled
appropriately”

The unequalised response of degree 2 is a casdaale o
first-order HF rolloff and a 2nd order LF rolloffith a

Q of 1.01. The corresponding time response is thels
damped. This contrasts with the open sphere dase,
which the HF response has ‘wiggles’, caused bysereie
event in the unequalised impulse response corresppn
to the propagation time for an impulse to cross the
diameter of the sphere. These wiggles are mininize

Figure 1: Extraction of harmonics from a spherical arraythe use of cardioid capsules ([4], [6]) but areertheless

(from Gerzon [7]).

3 SPHERICAL ARRAY OPTIONS

The need for, for example, a 12dB/8ve bass boastdar

to produce a second order output from pressureosens

makes it difficult to construct a studio qualityardphone
using the principle just described [2].

A larger sphere radius lowers the ‘knee’ frequebelpow

visible in plots such as figure 1 of [4], and cahid
course be equalized exactly by simple analogue snean

Another problem to be faced with the open sphetbas
capsules are not in practice acoustically transpase an
analytic treatment is much more complicated androag
need finite element techniques to solve the acdousti
scattering problem.  Moreover a reasonably dense
spherical array of non-transparent capsules iangdr of
creating a cavity resonance with the volume ofwaihin

the sphere, requiring very precise equalizatidghéfaudio

which boost must be applied, and so lowers thel totgansient response is not to be adversely affected.

amount of boost. However, larger spheres will lteisu

anomalies at high frequencies (roughly, frequenaies
which the spacing between adjacent capsules
comparable with a wavelength) and in practice thesb

will be required over most of the audio frequerayge.

As the signals to be boosted are obtained usingtaxm

Can cardioid capsules be mounted on the surface of
§Qlid sphere, pointing radially outwardls Yes one can
mount them so, but they then cease to have a dé@rdio
responsé A cardioid capsule senses a combination of
pressure and velocity. The radial component obaitf

is however constrained to be zero by the solidaserfso

that subtracts larger but nearly equal signals, thepsules that have a cardioid when in free spacenhe
requirement to boost not only increases noise kBd a equivalent to pressure sensors when mounted radiala
magnifies modulation noise and nonlinear effectsd a spherical surface.

makes capsule matching extremely critical [2].

If first order capsules can be used in place offuee
sensors, then the required boost is reduced by8seBs0
now is ‘only’ 6dB/8ve for a second order outputf.(c.
figure 1 of [4]).

First order capsules are directional, and it woblg
natural to point the directional capsules radialljywards
from the centre of the sphere. This however raibes
question of whether the sphere exists physicallg Bn

On balance the authors see advantages in usindida so
sphere. As discussed, we also wish to make ugheof
velocity sensitivity of first order sensors in orde reduce
the need for bass boost. If the radial compondnt o
velocity is constrained to be zero on the surfdca solid
sphere, we are led to consider orientating theoserns
respond to tangential velocity. That is, the sengmint

in directions parallel to the surface rather thadially
outwards.

solid, or whether the microphones are in an ‘open’

arrangement on the surface of a conceptual sphere.

Equalisations for the solid sphere and for the ofmn
‘free field’) spherical arrangement have been gdiate
[2], [4], [6] and several other recent publicationk can
be shown that the equalization for the solid spheakes
the form of simple analogue filters:

® These analogue equalizations are exact, and catetbeed
from the more complicated expressions usually gldtat use
spherical Bessel functions and/or Hankel functiofibey were
known in 1896 to Lord Rayleigh, who derived thenréfation

4 SYMMETRY

For a small number of pressure sensors it has seeme
sensible to make use of the symmetries of the Riato
solids, i.e. tetrahedral, cubic (or octahedral) and

to the dual (or reciprocal) problem of sound rad@tfrom a
spherical surface, with angular dependence givesgherical
harmonics. See [9] §323.

% l.e. the unit of time is taken as the time taken gound to
travel a distance equal to the radius of the sphere
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dodecahedral (or icosahedral) symmetry. as this carlocity is in a direction perpendicular to thenseof the

reduce the number of sensors required for a givatisc.
For example, if one adds together tipdane of the disc includes the corresponding edghe

performance.
outputs of twelve pressure sensors mounted atehtres
of a faces of a dodecahedron, a zeroth-order “\Whialiis

As shown, the sensor is orientated such tthat

tetrahedron, so the axis direction is perpendictdathe
edge.

recovered with no contamination from any inciden . L
y }A variation is to mount the sensors so their akisations

harmonics of degree. one _through five. To .aChH - tﬁwe parallel to the respective edges of the tetiraimeor
same result by solving simultaneous equations @n t

. , X ; other reference polyhedron. Such a parallel asamgpt
outputs of a ‘random’ array, at least thirty-sixnsers . . : i
would in general be required is equivalent to a perpendicular arrangement usimegy

' dual polyhedron, but as the regular tetrahedrosel$

dual, the perpendicular and parallel orientations a
equivalent in this case.

If the thirty-six (or more) randomly placed senswmre
recessed into the surface of a sphere, so thathheyno
effect on the sound field, it would be simple taide the
equations that would need to be solved in ordésdiate

the different harmonics. . . . .
o ; . with previous reasoning the capsules might be nezlioh
present significant acoustic obstruction, a non; )

.the surface of a sphere enclosing the polyhedron.

symmetrical array requires sophisticated analysis;

The polyhedron need not exist physically of course,

. instead merely acting as a reference, and in aacced
However if the sensors do

alternatively the relevant equations may be detegchi
empirically by measurement. Whichever method edus
the derivation has to be repeated for each frequenc

In contrast, if symmetry arguments can be useddtaie

the different harmonics, then capsules presentia r
acoustic obstruction can be used, provided that the
underlying symmetry of the array is not broken. eTh
matrix (in figure 1) required to separate the ddfe
harmonics is independent of frequency, only the
equalizations being dependent on the precise dcoust
behaviour of the capsules. Moreover, one needs a
separate equalization only for each degree of haiano
not for each individual harmonic. Thus, for a seto
order microphone, only three different equalizaioeed

to be determined.

VY O

[

Figure 2: Sensors on the edges of a tetrahedron

How then can we make use of symmetry with velocity
sensors ? If one could use an ‘XY’ sensor, i.eeasor
having uniform two-dimensional sensitivity withirhet

plane tangent to the surface of the sphere, then&ym  \ye now consider the response of the array of figuie a
would be retained. However a conventional veloCitY,,nd field whose pressure is expressed as a sum of
sensor, such as a figure-of-eight microphone, has (@perical harmonics on a solid sphere on which the
preferred axis, and placing such sensors at theeseof 555 jes are mounted. Table 1 lists the nine haiosof

the faces of a regular polyhedron would destroy tr‘@egree up to two, normalized to unit power averamest
polyhedral symmetry. the sphere and labelled'WX', Y', Z, R, S, T', U' and V.
Accordingly, the authors have proposed [10] thathea For brevity we shall now drop the primes, which dav
capsule be associated with an edge rather thanawiilhe been used in table 1 to indicate that the norndizas

or a vertex of a polyhedron, the edge providingaaural  different from that proposed by Furse and Malhaii.[1

direction so that the directional sensors neecredk the The expression given for pressure is valid onlytoa
symmetry. surface of the unit sphesé + y*+ Z = 1. Also shown is

the pressure gradient, corresponding to the faat ¢h
velocity sensor is equivalent to a pressure gradiensor
with an internal bass boost. Again, only the tanigé
component of gradient has validity in the curreontext,
because the radial component is constrained telmean
the surface of the sphere.

6 SPHERICAL HARMONIC PERFORMANCE

5 EDGE MOUNTED SENSORS

As the regular tetrahedron is the simplest platsoiid,
we start by considering velocity sensors whosectioas
are aligned with the six edges of a regular tettetre
The arrangement is indicated in figure 2, the times
therein indicating the correspondence between edge
and its respective sensor. Each sensor is showrtlsia
disc, suggestive of the diaphragm of a capacitpré-of-
eight microphone, so that the axis along whicheitses
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Table 1 Spherical harmonic values and gradients

With suitable choice of coordinate axes and nunnigeoif

the capsules shown in figure 2, we can now tabutze

positions and the capsules and the direction cesihéhe
axes for the capsules, as shown in table 2

Capsule # | Position | Direction cosines
X, Y, Z u, v, w
1 0,1,0 12 g2
2'7 2
2 O’ O|1 72 _E 0
2’ 27
3 1! OIO 072 _72
20 2
4 O! 0! _1 E’E’O
2’ 2
5 1,0,0 0 Y2 42
272
6 0,-1,0 | _42 4_42
272

Table 2 Capsule positions and axis directions

By taking scalar products of the direction cosines

table 2 with the pressure gradients in table 1, cae

derive the responsesesp; resp,, ...

capsules as:

resps of the six

) . w
resp, x
resp, y
resp, z
=A.|r
resp, <
resp5 t
respg u
L ] v
where
o o —@ —@ 0 —JEZﬁ 0 0 —Liszﬁ
o A8 A5 g B BE
0 o0 —@ @ 0 —JEZﬁ 0 0 JEZﬁ
A=
o—@o—@o 0 @ﬁo—@ﬁ
o A8 8 o o B2 R,
0 —@ 0 @ 0 0 JTSZﬁ 0 JTSZﬁ

Of course, we cannot expect six capsules to resthe
independent harmonics, so it is unsurprising to smae
linear dependencies, or even zero columns, in this
matrix A. The first column indicates zero respots&V,

as would be expected with velocity sensors onlyhe T
fifth and eighth columns indicate a zero respoms¢he
second-degree harmonics R and U. Further inspectio
shows that the response to S (sixth column) isatedc
copy of the response to Y (third column), and sanhy
with T and X, and with V and Z. So though we are
considering nine linearly independent excitatioms
receive only three linearly independent outputsiftbese
six capsules !

Therefore no second degree harmonics can sensibly b
retrieved from this array; and the retrieved fidetgree
harmonics X, Y and Z will be contaminated by second
degree harmonics.

Retrieval and contamination can be assessed maddyre
by inspection of the matrix /A:

0 0 0 0 0 O 0 0 07

0 6 0 0 0 0 6/5 0 0

0 0 6 0 065 0 0 O

0 0 0 6 0 O 0 0 65
ATA=|0 O 0 0 0 o0 0 0 o0

0 0 6/5 0 0 30 0 0 0

0 6/5 0 0 0 O 30 0 ©

0 o0 0 0 0 O 0 0 O

0 0 0 6/5 0 0 0 0 30]
This matrix can be considered to represent a

straightforward attempt to recover each harmonic by
taking the scalar product of the array output wittie
output that obtains when the array is excited bat th
harmonic alone. The diagonal elements fA Aepresent
the strengths of the recovered harmonics, whileatfie
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diagonal elements represent contamination from
‘unwanted’ harmonics when this is done.

The contamination can be eliminated if the capsales
given a ‘twist’ of 45 degrees, i.e. rotated to aediion
midway between the parallel and perpendicular
orientations discussed earlier, as shown in fiQureThe
direction of twist may be chosen as clockwise or
anticlockwise, but should be consistent between the
capsules.

O E.

Figure 3: Tetrahedral arrangement with ‘twist’ of 45° Figure 4: Sensors on the edges of a cube

With this arrangement, the matriX A becomes: With twelve capsules we might hope to resolve ajhee
harmonics of first and second degrees, but on ctingpu

00000 0 00 0 ATA for these two arrays, we find, respectively,
06 00O O 0 O0 d
006 00 0 00 [0 0 0 0 0 O 0 0 O]
0006 0 0 00 ( 0 12 0 0 0 O 0 0 (
ATA=|0 0 0 OO 0 0 0 ( 0 0 12 0 0 O 0 0 (
0 0 00 0 30 00 ( 0O 0O 0 12 0 0 0 0 (
00000 0 3 0 ( ATA=|0 0 0 0 0 O 0 0 (
00 00O O 0O d 0O 0 O O 0 60 0 O (
10 0000 0 0 0 3( 0 0 0 0 0O 0 60 0 (
The diagonal elements with value ‘6’ represent the c 0 0 00 0 00 ¢
response to the first-degree harmonics X, Y and/hile 0 0 0 00 0 0 0 6
those with value ‘30’ represent the response ts#oend- and
degree harmonics S, T and V. The array is ‘blital’
harmonics R and U. The absence of off-diagonal (0 0 0 0 00 0 0 0
elements indicates lack of contamination betwesesh &ind 0 12 0 0 0 0 0 0 (
second-order harmonics. 0 0 12 0 0 0 0 o0 (
An alternative interpretation of figure 3 is thalet 0 0 012 000 0
capsules lie at the centres of the faces of a ctitwavever ATA=[0 0 0 0 9 0 0 0
the arrangement does not have hexahedral (cubic) 0 0 0 0 000 00
symmetry when the directionality of the capsuletaken 0 0 0O O OO0 O0 0
into account. 0O 0O O O O 0 0O 90 (
We now consider arrangements that are based arutiee 0 0 0 0 000 0(

as a reference polyhedron. Figure 4 shows cubiclal

. . n each case the three
arrangements of twelve sensors, using perpendi¢iagpy
and parallel (bottom) alignment of capsule axeatiat to

diagonal entries with tdaev
“12" refer to the first-degree sensitivity (showiag3dB

. etter signal-to-noise ratio than the arrangemeht o
the edges of the cube. (These are equivalent 9 9

; . igure 3). The other diagonal entries indicatet ttiee
respectively, parallel and perpendicular arrangesnen

) erpendicular arrangement “sees” only the S, T ¥nd
relative to the twelve edges of a regular octahediro Perp 9 . y
second order components, while the parallel arnzege
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concentrates the same total amount of second degsméid sphere. This is shown in figure 6, whichliie
energy sensitivity (180 wunits) into the R and Uigure5 but with the reference cube enveloped by a
components. sphere, on the surface of which the black dotsessmt
pressure sensors, each sensor being placed cgntitl
respect to a face of the (hidden) reference cubé¢here
are six pressure sensors altogether.

Y,
-

Energy sensitivity can be distributed evenly betwéee
second degree components by twisting the capsyles b
angle tan'(¥(2/3)) = 39.2°, as shown in figure 5.

Figure 5: Sensors on the edges of a cube, with ‘twist Figure 6: Velocity and pressure sensors on a sphere.
A zeroth degree output (‘W’) can be obtained byiagd

On recalculating matrix A we now obtain: together the outputs of all six pressure sensoris

(0 0 06 0 0 0 0 0 Q0 output will be uncontaminated by harmonic composent

0 12 0 0 0O 0O 0 0 ( of degrees one, two and three.

0 012 0 O O O 0 (

06 0 012 0 0 0 0 8 DODECAHEDRAL SENSOR ARRANGEMENT
ATA=|0 0 0 0 3 0 0 0 ¢

0 0 0 O 03 0 0 Arrays with larger numbers of capsules can of c®ulrs

0 0 0 0 0 0 3 0 used, for example as shown in figure 7.

0O 0 O O O 0O 0 3 (

0 0 0 0 0 0 0 O 34

confirming that an elegant compromise between e t
previous situations has indeed been found, thé dinsl
second degree harmonics being resolved unambigyousl
i.e. without contamination in either direction.

Analysis to third degree reveals some contaminatibn
the retrieved second degree harmonics from thigtete
harmonics. However, the first degree harmonic¥ ¥nd
Z are retrieved without third degree contaminatiomljke
with the arrangements previously discussed. (ShicH
degree contamination is typically manifest as ‘bieam
i.e. sharpening of nominal figure-of-eight polattpens at
high frequencies.) We would thus expect that the
arrangement of figure 5 could provide the basisaffirst-
order microphone with a performance very substiyitia  Figure 7: Dodecahedral arrangement, with “twist”.
better than current tetrahedral designs (whichesufbm
second-degree as well as third-degree contamination  Such a dodecahedral arrangement of 30 sensorsdpgovi
correct recovery of second degree harmonics, iecs@
7 RETRIEVING ‘W' of whether a parallel or a perpendicular orientatip the
sensors is used. A twist is preferred howeverpfftenal
As noted, the arrays described so far do not peodd twist being 35.69° relative to the perpendicular
degree zero or ‘W’ output. We propose therefore torientation. Using the simple and completely sabl
augment these arrays with one or more pressur@rsensnumerical method (of taking scalar products of sens
Ideally, symmetry should be preserved, and accghgin directions with computed pressure gradients) cedliim
we advocate that a symmetrical arrangement of press section 6, this arrangement then provides:
sensors should be incorporated into the surfacéhef
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» correct recovery of all 15 harmonics of degreeg 1, highly ‘efficient’ use of the information from th&0

and 3
e if restricted to degrees 1 and 2, recovery of tlybhte

harmonics of these degrees with zero contamination

from degrees 3 and 4

Further, a slightly different numerical inversioretimod,
still numerically stable (inverting a matrix having
eigenvalues within a factor 2.2 of each other) over
all 24 harmonics of degrees 1, 2, 3 and 4, thusinga

capsules.

9 COMPLETE STUDIO MICROPHONE

Combining the ‘W’ retrieval method with one of the
velocity sensor arrays described above, a comptatio-
quality microphone of first, second or higher ordan be

K assembled, the processing being as shown in fRyure

Zero-degree
Matrix O »  MidEQ W
(summation) harmonic
First degree -
> Matrix 1 > Mild EQ — XYz ——
harmonics .
OOk

EQ including
~~~~~~~~~ i‘\@loc@ Matrix 2 6dB/8ve —Second degree —»
- — harmonics —»

- bass boost

EQ including -

> Matrix 3 12dB/gve | nird degree >
— harmonics >
> bass boost >

Figure 8: Microphone array processing

Although this is not the only possibility, figuresBows

the simplest case where the pressure sensors whin
array are used exclusively to provide the “W” outpfi
degree zero, while the velocity sensors are used
exclusively to provide the outputs of degree ond an
higher. In the case that the pressure sensors are
arranged in a symmetrical array, the “Matrix 0"
processing to provide the zero-degree harmonic will
generally be simple summation.

As noted, there is one equalization characteristic
required for each degree of harmonic. This
equalization may be determined empirically or,hié t
sensors are considered not to present significant
acoustic obstruction and are mounted on the sudéce

a solid sphere, calculated analytically as detailed
earlier.

10 CONCLUSION

We have proposed the use of dipole (= “velocity”,
“pressure gradient” or “figure-of-eight”) sensors a
means to reduce the bass boost required in prayidin

second-order or higher-order capture of a sourd i
a point.

We have displayed several suitable symmetrical
arrangements of dipole sensors, based on alignment
relative to the edges of a regular reference palgdre

We have advocated that these sensors be mountad on
close to the surface of a solid sphere.

We have shown an arrangement of twelve velocity
sensors and six pressure sensors having
hexahedral/octahedfalsymmetry that can provide a
first-order microphone of extremely high qualityitiw

no bass boost required and complete freedom from
‘beaming’ at high frequencies caused by contanonati
from third degree components of the sound field.

This arrangement of twelve sensors can also betosed
provide a second-order microphone, with only 6dB/8v
bass boost required.

7 Or, acknowledging the twist, chiral octahedrahsyetry.
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We have also shown a dodecahedral arrangement of
thirty velocity sensors that can be used as thés lds

an extremely high quality second-order microphone
that is free from contamination from harmonics of
degrees three and four. The same arrangementszan a
be used as the basis of a third-order or a fourdlero
microphone.

Practical details that are needed in order to ksiilch a
microphone, such as the size of the sphere and the
specifications of the individual sensors, have lmegn
addressed in this paper and are under consideragion
the authors.
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