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Abstract: A theoretical comparison is undertaken, between three approaches for the reproduction of
a sound field. The first method is based on the decomposition of the sound field in terms of spherical
harmonics (as High Order Ambisonics), the second method is derived from the Kirchhoff-Helmholtz integral
(as Wave Field Synthesis) and the third approach relies on the solution of Least Squares algorithm. The
study focuses on reproduction systems including a spherical array of secondary sources. The study is
purely analytical, and is carried out in the framework of the theory of integral equations. Analogies and
differences between the three techniques are discussed and the important link between the theory of sound
field reconstruction and the theory of acoustic scattering is presented.

1 INTRODUCTION

Many methods have been proposed, which attempt
the reproduction of a desired sound field using an
array of loudspeakers. Most of these methods are
grounded on rigorous theoretical basis, which allow
the computation of the driving signals of the loud-
speakers from the knowledge of the target sound
field.

One class of these methods includes the represen-
tation of the desired and reproduced sound field in
terms of spherical harmonics. This category in-
cludes Ambisonics, which was initially proposed by
Gerzon [1] and has been further developed into High
Order Ambisonics [2], but also includes other tech-
niques such as those presented, for example, in [3],
[4] and [5].

The second class of techniques includes the formu-
lation of the problem in terms of the Kirchhoff-
Helmoholtz integral or of the Rayleigh first inte-
gral, which explicitly define the loudspeaker sig-
nals in terms of the normal derivative of the desired
sound field. The well established technique known

as Wave Field Synthesis, which was first proposed
by Berkhout [6], belongs to this category.

The third class of techniques is grounded on the nu-
merical solution of an acoustical inverse problem,
using techniques related to those used for the active
control of sound [7], [8], [9], [10], [11], [12], [13]
and [14].

In this paper the theoretical problem of sound field
reproduction is tackled using a formulation based on
a single layer potential [15] defined over a spherical
surface. This approach is analogous to that described
in [16]. We use the jump relation of the single layer
potential to compute an exact and general solution
of the problem under consideration. It is shown that
this solution is closely related to an acoustical scat-
tering problem. This solution will be used as a start-
ing point for the theoretical analysis of some simi-
larities and differences between the three families of
techniques introduced above.

The loudspeaker array is mathematically repre-
sented as a continuous distribution of monopole-like
sources (hereafter referred to as secondary sources),



arranged on a spherical surface in the free field. The
spherical surface is represented by ∂Ω, and the re-
production of the desired field is attempted in its in-
terior region Ω ⊂ R3.

It is important to mention that the ideal assump-
tion defined above does not take into consideration
the fact that, in all practical applications, the loud-
speaker array includes a finite number of secondary
sources. This fact is strictly related to the well-
known problem known as spatial aliasing. The lat-
ter has been extensively studied in the literature and
is of large relevance for a complete analysis of any
sound field reproduction system. In fact, the spatial
aliasing is the cause of artifacts, which can severely
degrade the performance of the system when the
wavelength of the sound to be reproduced is small in
comparison to the average distance between the sec-
ondary sources. This paper is focused on the analo-
gies and differences between the continuous formu-
lations of the different reproduction techniques in-
troduced above. For this reason, the issue of spatial
aliasing is not addressed here and the reader is re-
ferred, for example, to [17], [18] and [19] for the
analysis of this phenomenon in the framework of
sound field reproduction.

As it has been mentioned above, the directivity of the
secondary sources is not taken into consideration,
as they are assumed to radiate sound as monopole
sources. As a consequence of this and of the free
field assumption, the sound field generated by each
secondary source can be mathematically described
by a free field Green function, defined by

G(x,y) =
eik|x−y|

4π|x− y| (1)

Finally, the analysis is performed for a monochro-
matic sound field, with operating frequency ω. The
desired field p(x) is assumed to satisfy the homoge-
neous Helmholtz equation

∇2p(x) + k2p(x) = 0 (2)

in the reproduction region Ω. In the two equations
above, the wave number k = ω/c, where c is the
speed of sound, assumed to be uniform in R3.

Notation

Bold characters represent vectors in R3. We define

x := |x|, x̂ :=
x
x

(3)

The relation between cartesian and polar co-
ordinates of a vector x is given by

x=[x1, x2, x3] (4)
=[x cosφx sin θx, x sin φx sin θx, x cos θx]

Given the open set Ω, its boundary is represented by
∂Ω and Ω := Ω ∪ ∂Ω.

We also recall here the following orthogonality rela-
tion for the spherical harmonics [20]

∫

∂Ω

Y m
n (x̂)Y m′

n′ (x̂)dS(x) (5)

=
∫ 2π

0

dφx

∫ π

0

Y m
n (x̂)Y m′

n′ (x̂)r2sin(θx)dθx

=r2δnn′δmm′

and the following Wronskian relation [20]

jn(x)h′n(x)− j′n(x)hn(x) =
i

x2
(6)

2 SINGLE LAYER POTENTIAL AND JUMP
RELATION

The sound field generated by an infinite number of
monopole-like secondary sources continuously ar-
ranged on ∂Ω can be mathematically represented by
the following integral:

(Sa)(x) :=
∫

∂Ω

G(x,y)a(y)dS(y), (7)

x ∈ R3\∂Ω

This integral is known as single layer potential [15].
The function a(y) is usually referred to as the den-
sity of the potential and represents here the strength
of the secondary sources. It is assumed that the inte-
gration is performed on the surface of a sphere with
radius r. In this case, the infinitesimal portion of the
surface dS(y) can be expressed in spherical coordi-
nates by dS(y) = r2 sin θdφydθy.
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The single layer potential satisfies the homogeneous
Helmholtz equation (1) both in the interior and exte-
rior of regions Ω and R3\Ω, respectively [21]. The
integral (7) can be interpreted as the solution (non
necessarily unique) of an interior Neumann prob-
lem in Ω and as the solution of an exterior Neumann
problem in R3\Ω. For a definition of a Neumann
boundary-value problem the reader can refer to [20]
or [15]. It is therefore possible to define

pi(x):=(Sa)(x), x ∈ Ω (8)
pe(x):=(Sa)(x), x ∈ R3\Ω (9)

pi(x) and pe(x) are hereafter referred to as the in-
terior field and exterior field, respectively. The inte-
rior field can be interpreted as the sound field due to
sources located in the exterior of Ω, while the exte-
rior field can be interpreted as a field due to sources
in Ω.

If the density a(y) is continuous, the single layer
potential (7) is continuous throughout R3 [21], im-
plying that

pi(y) = pe(y), y ∈ ∂Ω (10)

pi and pe represent two different fields, defined on
different domains and with different physical nature.
Even though the two fields have the same value on
∂Ω, the values of their normal derivatives ∇npi and
∇npe are in general different. These are defined by

∇npi(y) := lim
h→0+

n̂ · ∇pi(y − hn̂) (11)

∇npe(y) := lim
h→0+

n̂ · ∇pe(y + hn̂) (12)

y ∈ ∂Ω

where n̂ is the unitary vector normal to ∂Ω and di-
rected towards its exterior. The difference, or jump,
between the normal derivatives is physically due to
the presence of the layer of secondary sources on
∂Ω, which determine a discontinuity in the gradient
of the single layer potential (7).

The jump relation for the single layer potential rep-
resents a useful results, which relates the normal
derivatives introduced above to the density a(y) of
the potential. This relation is given by [15]

a(y) = ∇npi(y)−∇npe(y) (13)

If we choose the interior field pi(x) to be equal to
the desired sound field p(x) in Ω, then the jump
relation provides the expression for the secondary
source strength function a(y), which allows a per-
fect reproduction of the desired field in Ω. It is there-
fore possible to write the following expression

p(x) =
∫

∂Ω

G(x,y)[∇npi(y)−∇npe(y)]dS(y),

x ∈ Ω (14)

This result is perfectly consistent with the Simple
Source Formulation presented in [20]. The argu-
ments shown here represent a different method to
obtain the same result. In order to compute the
source strength from the complete knowledge of the
desired sound field, we need to compute the normal
derivative of the exterior field, ∇npe(y).

3 EQUIVALENT SCATTERING PROBLEM

The problem discussed in the previous section can be
reformulated as an equivalent scattering problem. It
has been observed that, assuming that a(y) is contin-
uous, the value of the exterior field pe on ∂Ω equals
the value of the interior field pi. We assume now
that ∂Ω does not represent anymore the loudspeaker
array, but it represents instead the boundary of a scat-
tering object. If the desired sound field p(x) im-
pinges on this scattering object, a scattered sound
field ps(x) is generated. This field is a radiating so-
lution of the Helmholtz equation [21], thus repre-
senting the solution to an exterior problem. The sum
of the target (incident) field p(x) and of the scattered
field ps(x) gives the total field pT (x).

The scattering object Ω is assumed to be a sound
soft object, or in other words an idealized object with
pressure release boundaries. In mathematical terms,
this corresponds to the condition that

pT (y) = 0, y ∈ ∂Ω (15)

that is the acoustic pressure of the total sound field
equals zero on the boundary of the scattering ob-
ject. This condition is referred to as the homoge-
neous Dirichlet boundary condition.
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Under these assumptions and given a target/incident
field p(x), it can be easily seen that

ps(y) = −p(y), y ∈ ∂Ω (16)

Recalling the definition of the exterior field given in
the previous section and in view of equation (10) and
of the uniqueness of the exterior Dirichlet problem
[15], it can be easily seen that

ps(x) = −pe(x), x ∈ R3\Ω (17)

In view of this result and of the definition of pT (x)
given above, it is possible to rewrite equation (14) as
follows ∫

∂Ω

G(x,y)∇npT (y)dS(y) (18)

=
{

p(x), x ∈ Ω
−ps(x), x ∈ R3\Ω

This meaningful result can be summarized by the
following sentence:

Given a desired field p(x) and a continuous distri-
bution of monopole-like sources on ∂Ω, we want to
compute the function a(y), representing the strength
of these sources, which allows for an exact reproduc-
tion of the desired field in Ω. This function is equal
to the normal derivative of the total field pT (x) on
∂Ω, which is generated by the scattering of the de-
sired field by a sound soft object with the shape of
Ω.

Equation (18) gives also the expression of the sound
field generated by the layer of secondary sources in
the exterior region R3\Ω. This field is equal to −ps,
that is the phase-reversed scattered field.

4 SPHERICAL HARMONICS AND
ANALOGY WITH HIGH ORDER

AMBISONICS

As shown in [20], the interior and exterior sound
field can be expressed by means of spherical har-
monics and spherical Bessel functions:

pi(x) =
∞∑

n=0

n∑
m=−n

Amn(ω)jn(kx)Y m
n (x̂) (19)

pe(x) =
∞∑

n=0

n∑
m=−n

Cmn(ω)hn(kx)Y m
n (x̂) (20)

where Y m
n (x̂) are spherical harmonics, defined as in

[20] and jn(·) and hn(·) are spherical Bessel func-
tions and spherical Hankel functions of the first kind,
respectively. For sake of completeness, it is impor-
tant to specify that the time convention e−iωt has
been adopted (if the sign in the argument of this ex-
ponential were positive, Hankel functions of the sec-
ond kind should be used).

The two equations above can be used for the repre-
sentation of the field generated by the single layer
potential (18). Equation (19) can be used for the
representation of the target sound field p(x), corre-
sponding to the field in the interior region Ω, while
equation (20) can be used for the representation of
the field in the exterior region R3\Ω. It is clear that,
in general, Amn 6= Cmn. The combination of equa-
tions (19) and (20) with equation (10), which repre-
sents the continuity of the single layer potential over
the boundary ∂Ω, leads to the following relation:

∞∑
n=0

n∑
m=−n

Amn(ω)jn(kr)Y m
n (x̂) (21)

=
∞∑

n=0

n∑
m=−n

Cmn(ω)hn(kr)Y m
n (x̂)

It is recalled that ∂Ω is a sphere with radius r. In
view of the orthogonality relation of the spherical
harmonics (5), the previous equation leads to

Cmn(ω) = − jn(kr)
hn(kr)

Amn(ω) (22)

This is the boundary condition of a sound-soft
sphere (sometimes referred to as the Dirichlet
sphere). Equation (13) can be rewritten as

a(y)=
∞∑

n=0

n∑
m=−n

kAmn(ω)Y m
n (x̂) (23)

·
(

j′n(kr)− jn(kr)
hn(kr)

h′n(kr)
)

Applying the Wronskian relation (6) we obtain

a(y) =
∞∑

n=0

n∑
m=−n

Amn(ω)
ikr2hn(kr)

Y m
n (x̂) (24)

Analogous results have been derived by Poletti [4],
Wu and Abhayapala [22], Ahrens and Spors [23] and
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by the authors [24]. Consistently with the arguments
discussed in the previous section, it can be shown
that this equation also represents the normal deriva-
tive ∇npT of the total sound field introduced above
on ∂Ω. For the derivation of the field scattered by a
sound-soft sphere, see for example [20] or [16].

We assume now that the desired sound field corre-
sponds to the field generated by a virtual monopole-
like point source on z ∈ ∂Ω. In this case, the coeffi-
cients of the interior field are given by [20]

p(x) =
∞∑

n=0

n∑
m=−n

[ikhn(kr)Y m
n (ẑ)∗]jn(kr)Y m

n (x̂),

x ∈ Ω (25)

Substituting the expression in the square brackets
above to the coefficients Amn in equation (24) we
obtain

a(y)=
1
r2

∞∑
n=0

n∑
m=−n

Y m
n (ẑ)∗Y m

n (ŷ) (26)

=
1
r2

δ(cos θy − cos θz)δ(φy − φz)

The second equality is due to the completeness rela-
tion of the spherical harmonics (see [20] p.191). If
this density is plugged into the expression (7) of the
single layer potential, it can be easily seen that, for
the well-known properties of the Dirac delta, the re-
produced field equals the desired field generated by
the virtual point source.

For sake of mathematical rigor, we should empha-
size here that the assumption of the density a(y) be-
ing continuous does not hold anymore for this par-
ticular target field. However the singularity at z does
not represent a serious theoretical issue for the ar-
guments presented here. In fact, this results holds
rigorously if the series (25), representing the target
field, is truncated to any finite order N . The trun-
cation of the series corresponds to a spatially low-
passed approximation of the desired sound field, and
it is often applied when dealing with a finite num-
ber of secondary sources. As it is mentioned later,
this truncation to the order N leads on one side
to a reduction of the reproduction accuracy, but in-
creases on the other side the robustness of the sys-
tem. Applying mathematical passages analogous to

those shown by Rafaely [25] to the truncated series
(26), we obtain the following expression for the den-
sity a(y)

aN (y)=
1
r2

N∑
n=0

n∑
m=−n

Y m
n (ẑ)∗Y m

n (ŷ) (27)

=
1
r2

N∑
n=0

2n + 1
4π

Pn(ŷ · ẑ)

=
1
r2

N + 1
4π

PN (ŷ · ẑ)− PN+1(ŷ · ẑ)
1− ŷ · ẑ

where the functions Pn are Legendre polynomials
[20]. An identical result can be obtained if the ideal
assumption is made that both the target field and the
field generated by each secondary source can be ap-
proximated by a plane wave, with expansion coef-
ficients Amn = 4πinY m

n (ŷ)∗, where ŷ is the di-
rection of propagation of the plane wave considered
[20].

The first equality of equation (27) corresponds to a
High Order Ambisonics panning, as reported for ex-
ample by Daniel at al. [26], equation (16). With
analogous passages, the direct relation can be de-
rived between equation (24) and the Near-Field
Compensated High Order Ambisonics decoding pro-
cess [26].

5 HIGH FREQUENCY SCATTERING AND
ANALOGY WITH WAVE FIELD

SYNTHESIS

We consider now the case of an acoustic wave scat-
tered by a pressure release infinite plane ∂Λ. We
assume that the incident field is due to a monopole
source with strength a0 at a distance d, say, from the
plane. It can be seen that the scattered sound field
is equivalent to that generated by a mirror source,
specular in respect to the scattering plane to the
monopole source generating the incident field, but
with phase-reversed strength −a0. This scattered
field satisfies the pressure release boundary condi-
tion pT = 0 on the scattering plane. It follows that
the normal derivative of the scattered acoustic field
equals the normal derivative of the incident field.
Therefore, the normal derivative of the total pressure
field, ∇npT , equals twice the normal derivative of
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the incident field. This argument can be extended to
a more general category of sound fields. If this result
is plugged into the jump relation (13), we see that the
single layer potential reduces to the first Rayleigh in-
tegral formula:

p(x) =
∫

∂Λ

G(x,y)2∇np(y)dS(y) (28)

It should be noticed that the integration is performed
over the infinite plane ∂Λ instead of over the sphere
∂Ω (in which case the above result would not hold).

Going back to the case of spherical geometry ad-
dressed in this paper, the result derived above proves
to be useful when the wave length considered, λ =
2π/k, is much smaller than the radius r of the sphere
∂Ω. In this case, as suggested by Colton and Kress
[21] p.54, it is possible to solve the scattering prob-
lem using the Kirchhoff approximation of the total
field. As a first step, it is assumed that pT and its
normal derivative ∇npT equal zero in the so-called
shadow region ∂Ω+, that is the region which is not
illuminated by the incident field. For example, in
the case of an incident plane wave coming from the
direction [θ0 = π/2, φ0 = 0], the shadow region
corresponds to the hemisphere ∂Ω+ = {y ∈ ∂Ω :
π/2 < φy < 3π/2}, while the illuminated area is
∂Ω− = {y ∈ ∂Ω : −π/2 ≤ φy ≤ π/2}. In the
illuminated area ∂Ω−, the scattering object can be
considered locally as a plane. Therefore, as shown
above, ∇npT (y) = 2∇np(y), y ∈ ∂Ω−.

Inserting these results in equation 18, we obtain the
following result:

p(x) ≈
∫

∂Ω−
G(x,y)2∇np(y)dS(y), (29)

x ∈ Ω

This result is analogous to the Wave Field Synthesis
approach with an analytical secondary source selec-
tion criterion, proposed by Spors [27], derived from
the Kirchhoff-Helmholtz integral.

As mentioned above, this result is a high frequency
approximation of the more general result given by
equation (18), and does not produce an accurate re-
production of the desired field when the wave length
considered is comparable with the size of Ω. On the

other side, this approach allows an explicit and sim-
ple computation of the source strength function a(y)
in terms of the normal derivative of the incident field,
with no need to solve a (usually non trivial) scatter-
ing problem.

6 ACOUSTICAL INVERSE PROBLEM AND
SOLUTION OF THE INTEGRAL

EQUATION

It is now assumed that the desired sound field is not
known a priori, but it is measured by an array of L
omnidirectional ideal microphones, arranged at the
locations xl ∈ Ω. We now want to define the source
strength function a(y) that minimizes the cost func-
tion J given by

J :=
L∑

l=1

∣∣∣∣p(xl)−
∫

∂Ω

G(xl,y)a(y)dS(y)
∣∣∣∣
2

(30)
This error minimization problem is a generalization
of the approach proposed by Kirkeby and Nelson
[8], which is grounded on the solution of an inverse
problem and is strictly related to the least-squares
method often used for active control of sound [7].

The ideal assumption is made that an infinite number
of microphones is arranged on the boundary ∂Ω. As
discussed in [28] and [16] if the desired sound field
is reproduced exactly on the boundary ∂Ω and if the
wave number k is not one of the so-called Dirichlet
eigenvalues kn for Ω, then the target field is repro-
duced accurately also in Ω. This result is due to the
uniqueness and solvability of the interior Dirichlet
problem for the case under consideration [15]. It
should be considered that this one-to-one relation
between the pressure field on the boundary and on
the interior region does not hold if k is one of the
Dirichlet eigenvalues mentioned above. These val-
ues correspond to the resonance frequencies of the
sound soft sphere Ω and are identified by the zeros of
the spherical Bessel functions, that is jn(knr) = 0.
As it will become more clear later, this is a non-
uniqueness problem and can be overcome in differ-
ent ways (not presented here).

What has been discussed above means, in other
terms, that the control effort can be limited to the
boundary ∂Ω, and the control of the acoustic pres-
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sure only (and not of its normal derivative) is suffi-
cient (again, if k 6= kn). Under the ideal assumption
of a continuous distribution of microphones on ∂Ω,
equation (30) can be rewritten as

J =
∫

∂Ω

∣∣∣∣p(x)−
∫

∂Ω

G(x,y)a(y)dS(y)
∣∣∣∣
2

dS(x)
4πr2

(31)
As it has been shown, under the assumption con-
sidered here the target field p(x) is in the range of
the single layer potential (7), implying that the mini-
mum achievable error J equals zero. The secondary
source strength function a(y) is given by the jump
relation (13). However, neither the normal derivative
of the desired field nor the normal derivative of the
corresponding exterior field are known now. This
fact represents a complication in the determination
of a(y). The problem addressed can be reformulated
in terms of the following integral equation

p(x) =
∫

∂Ω

G(x,y)a(y)dS(y), (32)

x ∈ ∂Ω

where the function p(x) is given on ∂Ω and a(y)
must be computed. The equation above represents
an integral equation of the first kind, which is in gen-
eral not solvable. We know that a solution a(y) ex-
ists and is given by the jump relation (13). However,
the determination of a(y) is an ill-conditioned in-
verse problem. As shown by the authors [28], [16],
it is possible to seek a solution to (32) in terms of
the singular system of the integral operator involved.
We give here the solution of this problem for the
spherical geometry, and reference [29] for detail on
the derivation:

a(y)=
∞∑

n=0

n∑
m=−n

Y m
n (ŷ)

ikr4jn(kr)hn(kr)
(33)

·
∫

∂Ω

p(x)Y m
n (x̂)∗dS(x)

It can be observed that the ill-conditioned nature of
the problem is given by the decay of the singular val-
ues of the integral operator, appearing in the denomi-
nator of the fraction in the equation above. However,
the large order approximation of the spherical Bessel
and Hankel functions (see, for example, [21] or [20])

shows that the singular values exhibit a linear decay
(instead of exponential), thus implying that the in-
verse problem considered is only mildly ill-posed. It
is possible to apply a regularization scheme in order
to increase the robustness of the system against noise
and other errors. Besides the usual Tikhonov regu-
larization method, it is also possible to apply a sim-
ple spectral cut-off of the operator. The latter corre-
sponds to the truncation of the series (35) to a given
order N (as it was done for equation (27) ).

It can be noticed that equation (24) and equation (35)
are analogous, and their comparison leads to the fol-
lowing relation

Amn(ω) =
1

r2jn(kr)

∫

∂Ω

p(x)Y m
n (x̂)∗dS(x)

(34)
This result was also derived by Williams [20] and
by Poletti [4]. Probably not surprisingly, this equa-
tion is analogous to the Ambisonics encoding equa-
tion for the so called open-sphere case (see Daniel et
al. [26] equation (26) using omnidirectional micro-
phones).

It can be seen that the problem with the Dirichlet
eigenvalues is directly related to the fact that, for
the presence of the spherical Bessel function, the
denominator in the equation above can equal zero.
As mentioned before, this occurs at some specific
frequencies, sometimes referred to as forbidden fre-
quencies [20]. This fact does not imply that the
denominator of (34) equals zero for a given n, but
it rather implies that the corresponding coefficients
Amn can not be determined uniquely. In fact, at
the given Dirichlet eigenvalue kν any solution of the
form

a(y)=
∞∑

n=0
n 6=ν

n∑
m=−n

Y m
n (ŷ)

ikνr4jn(kνr)hn(kνr)
(35)

·
∫

∂Ω

p(x)Y m
n (x̂)∗dS(x)

+
ν∑

m=−ν

bmY m
ν (ŷ), bm ∈ C

is a solution to the integral equation (32). However,
only one of these solutions allows an exact reproduc-
tion of the desired field in Ω.
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7 CONCLUSION

The problem of the reproduction of a desired sound
field with a continuous distribution of monopole-like
secondary sources on a sphere has been addressed,
and the function a(y), representing the strength of
these sources, has been calculated using the jump
relation of the single layer potential. It has been
shown that the solution of the sound field reconstruc-
tion problem is strictly related to the solution of an
equivalent scattering problem involving a sound soft
sphere. In particular, a(y) has been shown to be
equal to the normal derivative of the total field (inci-
dent field + scattered field).

It has been shown that the solution of this scatter-
ing problem for the spherical geometry considered
can be expressed in terms of a series of spherical
harmonics and spherical Bessel functions. This an-
alytical expression of the secondary source strength
function has been shown to be strictly related to the
High Order Ambisonics decoding equation.

For wave length much smaller than the radius of the
sphere ∂Ω, the scattering problem can be solved us-
ing the Kirchhoff approximation. This implies that
the secondary source strength function a(y) is twice
the normal derivative of the target field in the illumi-
nated area and zero in the shadow area. The relation
of this high frequency approximation method with
Wave Field Synthesis has been highlighted.

Finally, starting from a least squared error approach,
the sound field reproduction problem has been for-
mulated as an integral equation of the first kind. Its
solution, expressed in terms of the singular system
of the integral operator involved, corresponds as ex-
pected to the function a(y) computed with the jump
relation of the single layer potential. The direct re-
lation between the acoustical inverse problem ad-
dressed and the equivalent scattering problem has
been emphasized.

Many of the results shown can be extended to other
geometries of Ω, different from a sphere (as long
as Ω is a bounded region with smooth boundaries).
However, all the equations involving spherical har-
monics and spherical Bessel functions are valid only
for the spherical geometry considered here.
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