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Abstract: Multipole–Matched Rendering (MMR) is a novel method to create three-dimensional sound fields in a lis-
tener’s vicinity (thesweet spot). The main features of MMR are arbitrary speaker and sweet spot location as well as
computational efficiency. It also requires less number of speakers than traditional approaches. Rendering is achievedby
expanding both the sound field of a virtual source as well as those of the loudspeakers into multipoles located at the center
of the sweet spot. The resulting error can be minimized usingthe Method of Moments (MoM) using either a Galerkin
or pointmatching approach. This results in an usually overdetermined linear system of equations that can be solved in
the least–squares sense using the pseudoinverse computed from a Singular–Value Decomposition (SVD). The SVD opti-
mally matches the multipole expansion of the virtual sourceto that of the speakers — hence the term Multipole–Matched
Rendering.
This contribution reports the extension of the method to broadband signals and highlights some optimization strategies to
reduce computational costs to arrive at a real–time implementation.

Key words: Spatial Sound, Multipole Expansion, Method of Moments, Singular–Value Decomposition

1 INTRODUCTION

Multipole–Matched Rendering (MMR) is emerging as an
alternative to other sweet–spot solutions for rendering spa-
tial sound such as Dolby Digital or Higher–Order Ambison-
ics (HOA) [1, 2]. It is closely related to HOA in that it
also utilizes a spherical decomposition of the sound field.
While HOA, however, uses all expansion coefficients up to
a pre–determined order to satisfy a spatial sampling theo-
rem, MMR uses the Singular–Value Decomposition (SVD)
to optimally match the multipole expansions of a virtual
source to those representing the speakers. As a conse-
quence, MMR can typically use fewer speakers that do not
need to be in a regular arrangement and still achieve accept-
able perception. Rendering quality has been shown to be
on-par with Wave–Field Synthesis (WFS) in perceptional
experiments [3].

MMR has originally been derived for a single frequency
[4]. Rendering of a narrowband signal was then achieved
by computing the signal’s Hilbert Transform, multiplying
it with the computed speaker weights and playing back the
real part of the computed signal on the actual speakers. This
is briefly reviewed in section2. Rendering broadband sig-
nals requires a full subband decomposition approach. Pos-
sible strategies for this and the current implementation are
discussed in section3. An optimization strategy for moving
sources is presented in section4.

2 MONOFREQUENT FORMULATION

The pressure field emanated from a single–frequency, om-
nidirectional sound source in free space is

ps(rl, r
′
s) = As

e−jκ|rl−r
′

s|

4π|rl − r′
s|

. (1)

r′
s andrl are the source and listener locations, respectively.

κ = 2π
λ

is the wave number. Throughout this paper, a time
factor ofe+jωt is assumed. Source coordinates are denoted
with a prime while observation coordinates are unprimed.
In the following, a unit amplitude (As = 1) is assumed.
This is the closed form expression for the free–space acous-
tic Green’s function. The goal is to approximate the pres-
sure field given by (1) (i.e. a virtual source) by an array of
S loudspeakers of the same characteristic. The composite
sound field of the loudspeaker array can be written as

p(rl, r
′
1, . . . , r

′
N ) =

S
∑

i=1

Ai

e−jκ|rl−r
′

i|

4π|rl − r′
i|

. (2)

r′
i is the location of thei-th speaker and theAi are un-

known, complexspeaker weightsthat need to be deter-
mined.

Due to the finite number of speakers, the approximation of
the sound field according to (1) using (2) will generally con-
tain an errore such that

ps(rl, r
′
s) = p(rl, r

′
1, . . . , r

′
S) + e(rl, r

′
1, . . . , r

′
S) . (3)

Minimization of e according to to a suitable strategy and
criterion will lead to a linear set of equations that can be



used to solve for the speaker weightsAi. To this end, the
pressure fields of the virtual source and the speakers are
expanded in terms of spherical multipoles. The spherical–
multipole expansion of the free–space Greens function is
[5, p. 259, eq. 8.22]

e−jκ|r−r
′|

4π|r − r′|
= −jκ

∞
∑

n=0

jn(κr<)h(2)
n (κr>)

+n
∑
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Yn,m(ϑ, ϕ)Y∗
n,m(ϑ′, ϕ′) ,

(4)

where the following definition holds for the radial coordi-
nate:

r> =

{

r , r > r′

r′ , r < r′
and r< =

{

r , r < r′

r′ , r > r′
.

(5)
jn is the spherical Bessel function ensuring regularity of the
field at the origin andh(2)

n is the Hankel function of the sec-
ond kind, satisfying the Sommerfeld radiation condition for
free space. Likewise,Yn,m are spherical harmonics related
to the Associated Legendre Functions of the First Kind,Pm

n

by:

Yn,m(ϑ, ϕ) =

√

2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cosϑ)ejmϕ . (6)

The spherical harmonics are an orthogonal function system,
i.e.

π
∫

0

2π
∫

0

Yn,m(ϑ, ϕ)Y ∗
n′,m′(ϑ, ϕ) sin ϑ dϑ dϕ = δn,n′δm,m′ ,

(7)
whereδi,j is the Kronecker delta. This orthogonality will
be used to efficiently compute the speaker weightsAi.

To this end, the closed–form expressions in (3) are replaced
by the corresponding multipole expansions according to (4).
To exploit orthogonality, the error is minimized on average
over a sphere around the listener (radiusrl). It is further
assumed that all virtual sources are located outside the lis-
tener’s head. This means thatr> = r′ andr< = r = rl

hold for all virtual and physical sources. Equation (3) thus
becomes
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The so–called Galerkin approach for the Method of Mo-
ments mandates that the average error on the sphere around

the listener’s head becomes zero, i.e. that
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(9)
The Kronecker deltas from the orthogonality relation (7) fil-
ter out a single term from the double sum overm andn in
(8). Using the firstNR radial modes, this leads to a system
of N2

R linear equations. For any given combination ofn and
m, the equation becomes

jn(κrl)h
(2)
n (κr′s)Y

∗
n,m(ϑ′
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The system of equations can be rewritten as

[Cj,i] [Ai] = [Bj ] , (11)

wherej is related ton andm by j = n2 + n + m, where
n = 0, . . . , NR andm = −n, . . . , +n. Let N = N2

R. Then
C is anN × S matrix,A is anS × 1 column vector andB
is anN × 1 column vector. The matrix entries are

Cj,i = jn(κrl)h
(2)
n (κr′i)Y

∗
n,m(ϑ′

i, ϕ
′
i) . (12)

TheAi are the speaker weights and the right–hand side el-
ements are

Bj = jn(κrl)h
(2)
n (κr′s)Y

∗
n,m(ϑ′

s, ϕ
′
s) . (13)

The system of equations (11) is typically overdetermined,
although a very large number of speakers can also lead to an
underdetermined system. Such a system can be solved op-
timally in the least–squares sense using an SVD. The SVD
of matrixC is given by [6]:

C = UΣV H , (14)

where the superscriptH denotes the Hermitian.U isN×N ,
Σ is N × S, andV H is S × S. The pseudo–inverseC+ is
then of dimensionS × N and can be computed by

C+ = V Σ+UH , (15)

whereΣ+ is obtained by replacing the non–zero singular
values inΣ by their respective inverse. Besides being the
optimal solution, the singular values in the pseudo–inverse
can be manipulated to numerically stabilize or accelerate
the solution. In a broadband context, the singular values can
also be used to achieve equalization to offset or minimize
coloration.

The matrix elements in equation (12) only depend on the
speaker and listener location. This means that for stationary
speakers and listener, rendering of a moving source is effi-
ciently achieved by a simple repeated computation of the
vectorB and a subsequent matrix–vector multiplication

A = C+B . (16)
Page 2 of5



3 BROADBAND EXTENSION

The first step in extending MMR to broadband signals is to
choose an appropriate number of frequency bins,Nf , for
the subband decomposition. Then, for each frequency bin,
the pseudo–inverse and, if the source has moved, the right–
hand side according to (12), (15), and (13) are computed.
Subseqent multiplication ofC+ andB yieldsS source–to–
speaker transfer functionsAi(k) of sizeNf . At this point,
two different paths can be taken. If the main processing
of the audio input is to be done in the frequency domain,
the input signal will be decomposed using an FFT. The re-
sulting input signal spectrum will then be multiplied with
the S transfer functions, subjected to an inverse FFT and
output to the speakers. An alternative path is to compute
the inverse FFT of the source–to–speaker transfer functions,
which yieldsS source–to–speaker impulse responses

ai(n) =

Nf−1
∑

k=0

Ai(k)e
j 2π

Nf
kn

. (17)

The audio inputx(n) is subsequently convolved with those
impulse responses

yi(n) = x(n) ∗ ai(n)

Nf−1
∑

m=0

x(n)ai(n − m) (18)

and then output to the speakers. This is the approach that
has been used in [3].

4 OPTIMIZING PERFORMANCE

For stationary sources, performance optimization is a non–
issue, as the main processing loop in this case simply con-
sists of theS convolutions. An engine like BruteFIR [7]
(also used in [3]) easily achieves realtime performance for
more than 50 channels. For a moving source, the repeated
computation ofB according to equation (13) becomes the
dominant part. The computationally most expensive part
is the evaluation of the spherical cylinder functions, which
must be computed via a backwards recurrence that is very
compute–intensive, especially for higher orders.

In the current implementation, the path for a moving source
is described using a parametrized curvep(s) in 3D space,
along with the source’s velocityv along the curve. Ifs is the
natural parameter (i.e. the parameter value is equal to the
distance traveled from the starting point along the curve),
then the positions of a source can be computed from the
time t as

s(t) = p(vt) . (19)

In the simplest case, the path is sampled at the same rate
as the audio. For a typical 44.1kHz sample rate and a lin-
ear path with a speed of15m

s , this translates into a distance
of 0.3mm traveled between samples. While realtime opera-
tion has been achieved for up to 10 channels at this full spa-
tial resolution using multithreading on a quad–core 2.8GHz
Xeon system, full spatial sampling is clearly unnecessary.

Using the natural parameter on a curve makes it easy to de-
termine the distance a source has traveled along its path, so
an obvious optimization strategy is to recompute (13) only
after the source has moved farther than a threshold distance
from the last sample location. However, even for a modest
reduction in spatial resolution, clicks are audible in the ren-
dered sound. The reason is that the corresponding impulse
responses are sufficiently different to create audible discon-
tinuities when the source reaches the next spatial sample
point. The discontinuities can be avoided by using linear in-
terpolation of the impulse responses between sample points.
Using this technique, the update interval can be increased
even further while still maintaining a subjectively correct
impression of source localization and movement. Figure1a
illustrates the discontinuities generated in the difference be-
tween a signals with a spatial update of 1cm (interpolated)
and a spatial update of 10cm (not interpolated). Figure1
shows the difference between two signals for update inter-
vals of 1cm and 100cm (both interpolated).

Spatial Sampling Interpolation CPUs Runtime
1cm yes 70 11.082min

10cm no 70 2.755min
100cm yes 28 1.587min

Table 1: Runtimes to render 5s worth of audio data, using
different spatial update intervals and interpolation methods.
The results have been computed using octave on a computer
cluster using the indicated number of CPUs (2GHz Intel
Xeon). The number of speakers wasS = 40, the number of
radial modes wasNR = 14, and 258 frequency bins have
been used.

5 SUMMARY AND OUTLOOK

MMR has successfully been extended to broadband signals.
Decoupling the spatial from the temporal sampling rate re-
sults in significant speedups while maintaining rendering
quality. Currently, an implementation of the method that
will achieve realtime operation on an SMP system is under-
way. Future work will concentrate on more formal evalua-
tion of the impact of the number of frequency bins as well
as studying coloration.
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(a) Difference between signals rendered using a 1cm (interpolated) and 10cm (non–interpolated) update interval, respectively. As the source
moves away from the last valid sample point, the differencesin the impulse responses increase. The maximum absolute amplitude error is
about -12dB. The discontinuities occur as the source reaches the next valid sample point and the error suddenly snaps back to zero. This is
clearly audible as clicks in the rendering.
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(b) Difference between signals of a moving source sampled usinga 1cm and 100cm update interval, both interpolated. The maximum
absolute amplitude error is still about -12dB, however, no clicking is present in the rendering any more as the transition between the two
error–free sampling points has been smoothed by the interpolation. Subjectively, localization and impression of movement is not impeded.

Figure 1: Difference between a typical channel of the signals of a moving source sampled at various spatial resolutions
with and without linear interpolation. Linear interpolation allows for much greater spatial sampling intervals whilestill
maintaining rendering quality, resulting in large execution time speedups.
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