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Abstract:
We aim to improve the calculation of near-field head related transfer functions from far-field HRTFs using point source
expansions into plane waves. We consider shifted expansions derived using the Fourier-Bessel representation and the
Sommerfield-Weyl identity, which are also relevant to field reconstruction with speakers.
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1 INTRODUCTION

Far-field Head Related Transfer Functions (HRTFs) provide
a well established tool for spatial auditory synthesis, but
when applied directly are limited to the creation of distant
images. The distance of sources within about 1.5m can be
discriminated by listeners as a result of HRTF changes, in-
dependently of other factors such as environmental reflec-
tions.

Measuring HRTFs for near sources is both difficult, and dra-
matically increases the size of the complete data set. Near-
field HRTFs can be estimated from far-field HRTFs by con-
trolling the left and right angles and delays independently
according to parallax to the ears, and by adjusting according
to an analytic model for spherical head near-field HRTFs
[1, 2, 3, 4]. However, informal listening shows that near-
field HRTFs, especially the closest, are less convincing that
the far-field HRTFs can be, when compared with the cor-
responding real sources, even when near-field listening is
restricted by blocking the furthest ear. This implies that the
unaccounted distance variation of HRTFs due to scattering
sources such as pinna and shoulder, provide important loca-
tion cues. To model the scattering accurately and generate
near-field HRTFs we shall approximate point-source inci-
dent fields that are accurate on the most important scatter-
ing surfaces, using plane waves. The Sommerfield radiation
condition then implies the scattered field, which includes
the binaural signals, is accurate. In the following we review
and expand some theoretical work previously presented [5],
and consider an alternative incident field construction.

2 FOURIER BESSEL EXPANSION

In High Order Ambisonics (HOA), the field within a lis-
tening area is represented with a Fourier-Bessel expansion
(FBE) [6]. The field is reproduced over a loudspeaker ar-
ray, each speaker modeled as a point source or a plane wave

source if the speakers are sufficiently distant. In connection
with HRTF synthesis we consider full 3D HOA with plane
waves speaker sources corresponding to far-field HRTFs.
The FBE provides a route to generating a plane wave ex-
pansion (PWE).

Using HOA notation, the FBE expansion is given by

p(r, k) =
∑

m

imjm(kr)
∑

n

Bmn(k)Ymn(r̂) (1)

For a plane wave with sourceS(k) the FBE coefficients are

Bmn(k) = S(k) Ymn(r̂) (2)

From here onk dependence is omitted in most cases to sim-
plify the presentation. For loudspeaker sourcessi the PWE
is given by

p(r, k) =
∑

i

sie
−iki·r (3)

The expansions are related by

Bmn =
∑

i

Cimnsi (4)

where
Cimn =

∑

m,n

Ymn(−k̂i) (5)

The inverse relation is obtained approximately with a regu-
larized pseudo-inverse,

Dimn = (C∗C + λI)−1C∗ (6)

whereC = Ci mn is taken as a two dimensional matrix.
HRTF vector sets generally have large gaps in the down-
ward direction where measurements cannot easily be made.
This makes the simple source approach less attractive. The
regularization helps to reduces ill-conditioning caused by
the gap, and helps in other ways. Vectors are often pat-
terned due to systematic measuring procedures, causing



some degeneracy and loss of conditioning. Noise in the
Hi makes them sensitive to large, ill-conditioned sets ofsi.
Also higher unwanted harmonic componentsBmn which
are normally suppressed within the region of convergence
can be come significant in the ill-conditioned case.

The PWE is now given by

si =
∑

m,n

DimnBmn (7)

The signal at the ear is the sum of the HRTFsHi applied to
the corresponding plane waves,

H(r̂)S =
∑

i,m,n

HiDimn(S Ymn(r̂)) (8)

From which the HRTF for the direction̂r is

H(r̂) =
∑

i,m,n

DimnYmn(r̂)Hi (9)

For a near source the FBE has additional termsFm(kr),
known as distance functions [6]. The HRTF is modified as
follows, with the optimal order of calculation made explicit,

Bmn = SFm(kr)Ymn(r̂) (10)

H(r, k) =
∑

i,m,n

DimnFm(kr)Ymn(r̂)Hi(k) (11)

H(r, k) =
∑

m

Fm(kr)Hm(r̂, k) (12)

Hm(r̂, k) =
∑

n

Ymn(r̂)Hmn(k) (13)

Hmn(k) =
∑

i

DimnHi(k) (14)

The FBE point source can be made to approximate a real
source as closely as desired in the the valid region, includ-
ing the evanescent component, although the cost in order
is unbounded. This may be counter-intuitive because the
reconstruction is using only non-evanescent components.

The FBE provides a natural way to create a centred valid
expansion region. However in its direct application as de-
scribed above the region radius is limited to the distance
from the centre to the source. This can be overcome by cre-
ating an FBE of the source about another centre then phase
shifting the derived PWE so that it is relative to the desired
centre. Equivalently, the FBE can translated directly [7]. In
this way the limiting region that can be extended to a source
is a half space, although at the cost of increased order. For
HRTF synthesis this amounts to phase shifting the HRTFs,
or delaying in the time domain,

Hi → Hie
ik̂i·rt (15)

wherert is the translation from the HRTF centre to the FBE
centre.

As well as relaxing restrictions on the area of valid recon-
struction, changing the FBE centre can be used to focus on
important scattering regions such as the ear.

We have assumed plane wave reconstruction, and have seen
this makes HRTF translation via PWEs very simple. If
the base HRTF set is significantly near-field, a far-field set
could be pre-calculated by including distance filters for the
loudspeakers rather than the synthesized field point.

H(r̂, k) =
∑

i,m,n

Dimn

Fm(kr)
Ymn(r̂)Hi(k) (16)

wherer is the radius to the sources used to measureHi(k).
This method might also have signal to noise advantages
over far-field measurement.

3 FOCUSED SOURCES AND THE
SOMMERFIELD-WEYL IDENTITY

Wavefield synthesis, WFS, [8] is a two dimensional speaker
reproduction methodology, for which there is an established
technique for generating virtual sources either in front or
behind the speakers, by summing over plane waves evenly
along a semi-circle:

p(r) =
1

π

∫ π
2

−π
2

eik(θ)·rdθ =
1

π

∫ k

−k

1

ky
eikxx+ikyydkx

(17)

The field approximates an outgoing line source in one half
space and a converging line source in the other, hence it is
sometimes called a focused source. Clearly such a field only
approximates a line source, even in the continuous limit,
because the centre point has finite pressure, however at dis-
tance it converges.

There is a natural extension of the focused source expan-
sion, FSE, to three dimensions by integrating plane waves
over a hemisphere. If such an FSE converges it could have
several advantages over the FBE for near-field synthesis.
The 2D FSE similarly could have uses for 2D only HRTF
synthesis. An FSE of any order has a wide valid aperture
from source, whereas an FBE must have high order. An
FSE only uses plane wave vectors over a hemisphere, so re-
liance on HRTF directions which have not been measured
can be avoided. HRTFs from an FSE require no additional
distance filtering and can be generated directly by quadra-
ture of shifted measured HRTF, using the simple-source for-
mulation [9].

There are natural limitations to using FSEs. The near-field
of the FSE is not accurate, however if the scattering surfaces
are in the good FSE region, the synthesized HRTF should
still be good at that frequency. For the lowest frequencies,
the HRTF can be approximated with conventional, more di-
rect techniques, as there is little angular variation.

The FSE is centred around the source, so more distant
sources will require higher orders of expansion to reach the
scattering surfaces. At some point other techniques will be
preferable, perhaps using the conventional methods.

To better understand the theoretical basis for the focused
source and its convergence in three dimensions, we now
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look at the Sommerfield-Weyl identity (18), [11]. A deriva-
tion via the Fourier Transform of the point-source is given
in the Appendix.

1

r
eikr =

i

2π

∫ ∞

−∞

∫ ∞

−∞

1

kz
eikxx+ikyy+ikz |z| dkx dky

(18)

kz =
√

k2 − kx
2 − ky

2 is the positive real or imaginary
root. This is not a plane wave expansion as it is discon-
tinuous atz = 0. We can use this to write an expression
for an ideal focused source over all of space, with outwards
radiation on the positivez side,

1

r
e−z̄ikr = −z̄

i

2π

∫ ∫ ∞

−∞

1

kz
e−z̄(ikxx+ikyy)+ikz |z| dkx dky

(19)

wherez̄ is the sign ofz. The integral can be divided into two
parts. Forkz real the integral identifies with the 3D FSE,
with plane waves integrated uniformly over the hemisphere.
The remaining part withkz imaginary generates two half
spaces of evanescent waves, which are not smoothly joined.
In the positivez region, this part is the error in 3D FSE
compared with a point-source. The error along the z-axis is
given by

i

2π

∫ ∞

k

1

kz
eikzz2πkxydkxy (20)

wherekxy =
√

kx
2 + ky

2. Changing the integration vari-

able tokz leads to an error of1/z. This is alarming because
this is the same magnitude as the point-source for allz. It
is is not a short range effect that would be associated with
a real evanescent wave. For the 2D FSE a similar analy-
sis, where the positive y axis bisects the outward radiating
region, leads to an error

1

π

∫ ∞

0

1

kx
eikyydky . (21)

Sincekx → k asky → 0, the asympototic error isα/y, the
same decay rate as the 3D case. The 2D FSE error decays
faster than the 2D source, which converges asy−1/2, and so
the 2D FSE is convergent along the y axis. This is consistent
with successful use of focused line sources.

To understand the 3D FSE error over the full half space, we
calculate it over a plane through the z axis. This has been
carried out directly using vector sets, and also by calculat-
ing the FBE about the point source, with the FBE symmetry
axis matching the z axis. This produces a compact set of
harmonic coefficients, and provides a faster and more accu-
rate way to evaluate the FSE field. The FBE representation
can be used to realize a 3D FSE in HOA, in a similar way
to the 2D FSE used in [10]. Shifting of the FSE centre rel-
ative to the HOA centre can be achieved using multipole
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Figure 1: Re(p(z)) for the point source, and FBE FSEs.

re-expansion1.

The FBE coefficientsBmn for a plane wave with vector
−k̂, using HOA conventions, areYmn(−k̂). Referring to
(19) the coefficients for a 3D FSE are then

−i

2π

∫

k·ẑ>0

Ymn(−k̂)dΩ (22)

Integrating using spherical coordinates, coefficients forn 6=
0 vanish due to the azimuthal term vanishing. Changing the
integration variable toz = cos(θ) and using the Legendre
polynomial identityPm(−z) = (−1)mPm, the coefficients
in m become, for allk,

Bmn = −i(−1)m
√

2m + 1

∫ 1

0

Pm(z)dz (23)

The integral is1 for m = 0, 0 for evenm > 0, and oddm
have the closed form [12]

(−1)(m−1)/2 m!!

m(m + 1)(m − 1)!!
(24)

Fig ?? shows the error of the 3D FSE relative to the point
source at different ordersN . Fig ?? shows the real compo-
nent along the z-axis. We can see the error already calcu-
lated along the z-axis for higherN .

It is striking that the most suitable overall error profile could
be betweenN = 6 andN = 10, and good results can be
achieved at even lower orders. High resolution PWEs are
then formed by sampling only this bandlimited FBE, and
not a higher order FBE, as might be expected.

4 SUMMARY

The FBE can be used to generate accurate half spaces of
point sources, but at high cost. The FSE can produce half
spaces of point sources with limited accuracy more effi-
ciently, and it appears accuracy can be improved by using a

1The most efficient method of multipole re-expanslion may actually be
via a PWE, which is readily shifted and converted back to a FBE
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Figure 2: Relative error for a 3D FSE at different orders. The horizontal axes arez in units of wavelength.

limited FBE order approximation, with higher FBE orders
set to zero. This may be valuable for near-field binaural
synthesis, and 3D HOA over speakers.

5 APPENDIX

The following derivation of the Sommerfield-Weyl identity
is adapted from [13].

A 3D point source is described by the Helmholtz equation,

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

0

]
ϕ(x, y, z) = −δ(x) δ(y) δ(z) ,

(25)
Wherek0c = ω, the frequency ofϕ. In spherical coordi-
nates the solution is

(2) ϕ(r) =
1

4πr
eik0r . (26)

Negative time convention is used here, as it simplifies the
form of the final result. We can also try and solve by ex-
pressing as a Fourier transform first. Assuming the Fourier
transform exists, then the inverse Fourier transform has the
form

ϕ(x, y, z) =
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

ϕ̂(k) ei k·x dk (27)

The previous equations together with

δ(x) δ(y) δ(z) =
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

eik·x dk (28)

give

1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[
−k2

x − k2
y − k2

z + k2
0

]
ϕ̂(k) ei k·x dk

= −
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

eik·x dk (29)

Since the above equation holds for all values ofx the
Fourier components must agree, i.e.,

[
−k2

x − k2
y − k2

z + k2
0

]
ϕ̂(k) = −1 (30)

Or,

ϕ̂(k) = −
1

k2
0 − k · k . (31)

The inverse Fourier transform is now

ϕ(x, y, z) = −
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

k2
0 − k · k ei k·x dk

(32)
Although the integral is well defined, it does not immedi-
ately express the field in terms of plane waves, as would be
the case for a sourceless field. In order to find an expres-
sion that relates more directly to wave decompositions, we
evaluate the integral overkz first, without loss of generality.
The poles are at

k2
0 − k · k = 0 =⇒ kz = ±

√
k2
0 − k2

x − k2
y .

(33)
For z > 0 the integral is exponentially decreasing when
Im(kz) → ∞. Therefore, the integral overkz can be split
into the sum of an integral along the real line + an integral
over an arc of a circle of radius infinity = sum of the residues
at each of the poles in the upper arc.

Page 4of5



Using the Residue theorem we can show that

ϕ(x, y, z) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞

1

kzp
eikxx+ikyy+ikzpz dkx dky

(34)
wherekzp is the value ofkzat the poles, i.e.,

kzp := ±
√

k2
0 − k2

x − k2
y . (35)

When z < 0, the semicircular contour in the lower half
plane must be taken, and picks up the residue at−kzp. The
result for allz can therefore be written as

ϕ(x, y, z) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞

1

kzp
eikxx+ikyy+ikzp|z| dkx dky .

(36)
This describes the sum of two half-spaces of travelling (
kzp real) and evanescent planewaves (kzp imaginary) which
meet non-smoothly.

Finally we can write the Sommerfield-Weyl identity,

1

r
eik0r =

i

2π

∫ ∞

−∞

∫ ∞

−∞

1

kz
eikxx+ikyy+ikz |z| dkx dky

(37)

REFERENCES

[1] G. F. Kuhn, "Model for the interaural time differences
in the azimuthal plane," The Journal of the Acoustical
Society of America, vol. 62, pp. 157-167, 1977.

[2] R. O. Duda and W. L. Martens, "Range dependence of
the response of a spherical head model," The Journal of
the Acoustical Society of America, vol. 104, pp. 3048-
3058, 1998.

[3] D. S. Brungart, "Auditory localization of nearby
sources. Head-related transfer functions," Journal of the
Acoustical Society of America, vol. 106, pp. 1465-1479,
1999.

[4] A. Kan, "Distance Variation Function for Simula-
tion of Near-Field Virtual Auditory Space," Proceedings
of Acoustics, Speech and Signal Processing, ICASSP
Toulouse 2006 .

[5] D. Menzies and M. Al-Akaidi, ÒNearÞeld binaural
synthesis and ambisonics,Ó Journal of the Acoustical
Society of America, 2007.

[6] J. Daniel. Spatial Sound Encoding Including Near Field
Effect : Introducing Distance Coding Filters and a Vi-
able, New Ambisonic Format. in AES 23rd International
Conference. 2003.

[7] D. Menzies. Ambisonic synthesis of complex sources.
JAES, 55(10):864Ð876, Oct. 2007.

[8] E.N.G. Verheijen. Sound reproduction by wave Þeld
synthesis. PhD thesis, Delf tUniversity of Technology,
1997.

[9] M.A. Poletti. Three-dimensional surround sound sys-
tems based on spherical harmon- ics. Journal of the
Audio Engineering Society (AES), 53(11):1004Ð1025,
Nov. 2005

[10] J. Ahrens and S. Spors, "Focusing of virtual sound
sources in higher order Ambisonics," Proceedings of the
AES 124th International Convention, Amsterdam, 2008.

[11] H. Weyl. Ausbreitung electromagnetischer wellen
uber einem ebenen leiter. ” Annalen der Physik”,
60:481–500, 1919.

[12] Byerly, W. E. "Zonal Harmonics." Ch. 5 in An El-
ementary Treatise on Fourier’s Series, and Spherical,
Cylindrical, and Ellipsoidal Harmonics, with Applica-
tions to Problems in Mathematical Physics. New York:
Dover, pp. 144-194, 1959.

[13] http://en.wikiversity.org/wiki/Waves_in_compo

Page 5of5

http://en.wikiversity.org/wiki/Waves_in_composites_and_metamaterials/Point_sources_and_EM_vector_potentials

	Introduction
	Fourier Bessel expansion
	Focused sources and the Sommerfield-Weyl identity
	Summary
	Appendix

