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Abstract: A spherical loudspeaker array can be used to achieve directivity control. This is carried out by setting the
relative voltages of the array elements. In addition, sinceboth the transducer response and the radiation efficiency
depend on frequency, equalization filtering must be accomplished in order to produce a flat response. In this work, IIR
equalization filters are derived for generating radiation patterns that correspond to the acoustic radiation modes of the
array. The voltages and velocities of the transducers are related by using an electrodynamical loudspeaker model based
on the Thiele-Small approach. The sound radiation from the loudspeaker array is modeled analytically by considering it
as a set of spherical caps mounted on a rigid sphere. A numerical example is presented and it is shown that the acoustic
radiation modes are eigenvectors of the transduction matrix when the transducers share an empty enclosure, so that the
filter design is simplified.
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1 INTRODUCTION

In the last years, some research on the radiation control by a
compact array of independently programmable loudspeak-
ers has been carried out, notably spherical loudspeaker ar-
rays, see [1, 2, 3, 4, 5, 6, 7, 8].

Directivity control can be achieved by setting the relative
voltages of the array elements. The control strategy gen-
erally adopted is to provide the spherical array with some
preprogrammed basic directivities corresponding to spher-
ical harmonic patterns. Then, different directivities canbe
achieved simply by changing the gains associated with the
basic directivities, so that it is not necessary to redesignthe
filters when a different target directivity pattern is desired.

Acoustic radiation modes (ARMs) are an alternative to
spherical harmonics for describing the sound field that a vi-
brating structure radiates. Such a modal approach is based
on how efficiently a given velocity distribution on the struc-
ture surface radiates sound energy and it has been used since
the 1990’s, e.g., [9, 10, 11, 12].

Besides directivity control, since both the transducer re-
sponse and the radiation efficiency depend on frequency, a
spherical loudspeaker array must be provided with a set of
equalization filters in order to produce a flat response. In
this work, equalizers are derived analytically for generating
radiation patterns that correspond to the ARMs of the array.
Two equalization approaches are presented and compared.
In the first one, sound pressure equalization in a given radi-
ation direction is provided. In the second approach, sound
power equalization is provided.

To evaluate the filters, the sound radiation from the spheri-
cal array is modeled analytically by considering it as a set
of spherical caps mounted on a rigid sphere and by letting
each cap oscillate with a constant radial velocity [6]. The
voltages that feed the transducers are obtained by the elec-
trodynamical loudspeaker model described in [7]. These
models are revisited in this work and a numerical example
is provided.

2 SOUND RADIATION

This work concerns the linear acoustic radiation by spheri-
cal sources in the frequency domain, so that the Helmholtz
equation in spherical coordinates governs the sound propa-
gation. This equation is separable in such a coordinate sys-
tem and the angular dependence of the solution is given by
spherical harmonic functions. Throughout this work a har-
monic time dependence of the forme−jωt is assumed but is
omitted in the notation.

Acoustic radiation modes are vibration patterns that con-
stitute a useful representation of the dynamical behavior of
a vibrating structure when one is mainly interested in the
sound field that it radiates. Such a modal decomposition is
only a function of the frequency and the radiating structure
geometry, i.e., it does not depend on the source of excita-
tion and on physical characteristics of the structure, suchas
material properties and thickness.

This section provides some background on ARMs applied
to vibroacoustic sources having a finite number of degrees
of freedom. In addition, the radiation model for a spherical
loudspeaker array described in [6] is briefly revisited.



2.1. Acoustic radiation modes

The calculation of the acoustic power,W , radiated by a vi-
brating structure withL degrees of freedom generally leads
to expressions of the form (cf. [9, 10, 11, 12])

W (u) = ρcSuTCu (1)

whereρ is the density of the medium,c is the sound speed,
S is the vibrating surface area,u ∈ RL is the surface veloc-
ity of the vibrating structure (here, only real modes are con-
cerned) andC ∈ RL×L is a coupling matrix, which is sym-
metric and positive-definite. Throughout this paper, lower
case bold letters indicate vectors, while upper case bold let-
ters indicate matrices.

The acoustical radiation efficiency,σ, of a vibroacoustic
source is

σ(u) =
W (u)

ρcS〈|u|2〉
(2)

where〈|u|2〉 is the spatial mean-square velocity, i.e., [12]

〈|u|2〉 =
1

2S

∫

S

|u|2 dS = uTVu (3)

whereV ∈ RL×L is symmetric and positive-definite.

Substitution of Eqs.(1) and (3) into (2) yields to

σ(u) =
uTCu
uTVu

(4)

Since the radiation efficiency is in the form of the gener-
alized Rayleigh quotient, the matrixV-1C hasL orthogo-
nal eigenvectorsψ1,ψ2, . . . ,ψL corresponding to the real
eigenvaluesσ1 ≥ σ2 ≥, . . . ,≥ σL, andσ(ψl) = σl. These
eigenvectors constitute the desired ARMs and the eigenval-
ues are their radiation efficiency coefficients, so that an ar-
bitrary surface velocity can be expressed as

u = Ψc (5)

whereΨ ∈ R
L×L is a matrix that contains the eigenvectors

as columns andc contains nondimensional coefficients.

2.2. Spherical loudspeaker array

The sound radiation from a loudspeaker mounted on a rigid
sphere can be approximated by modeling the loudspeaker
diaphragm as a spherical cap that oscillates with a constant
radial velocity over its surface [6, 13]. This model better
approaches the actual loudspeaker sound field as the aper-
ture angle of the cap is made smaller. Therefore, in this
work, a spherical loudspeaker array havingL transducers is
modeled as a vibrating sphere withL degrees of freedom.

Figure 1 illustrates a spherical cap mounted on a rigid
sphere, where(y, z) are global Cartesian coordinates,rc is
the position vector of the center of the cap,rp is the posi-
tion vector of a given but arbitrary point outside the sphere,
θ0 is the aperture angle of the cap,θl is the elevation angle
in local coordinates andθ is the elevation angle in global
coordinates.

Figure 1: Spherical cap with aperture angleθ0 mounted on
a rigid sphere atrc.

Now, let the cap oscillate with a constant radial velocity
ul over its surface. Hence, by truncating the series up to
orderN , the free-field sound pressure (in local coordinates)
radiated by the cap is [14]

p̂l(r, θl) =
jρcul

2

N
∑

n=0

[Pn−1(cos θ0) − Pn+1(cos θ0)] (6)

× hn(kr)

h′

n(ka)
Pn(cos θl)

wherej =
√
−1, Pn(x) is the Legendre polynomial of de-

green, hn(x) is the spherical Hankel function of first kind
and ordern, k is the wave number anda is the sphere ra-
dius. Forn = 0, the difference of Legendre polynomials is
just1 − cos θ0.

If the spherical array hasL loudspeakers, the sound pres-
sure it generates will be obtained by superimposing the ra-
diated fields from theL caps, i.e.,

p(r, θ, ϕ) =
L
∑

l=1

pl(r, θ, ϕ) (7)

whereϕ is the azimuth angle andpl is the sound pressure
produced by thel-th cap in global coordinates.

3 TRANSDUCER MODELING

An electroacoustic model of the loudspeaker array can be
used for evaluating the voltages that must feed the trans-
ducers in order to achieve the velocities corresponding to
the ARMs of the array.

Here, only electrodynamical loudspeakers are concerned.
Figure2 is a free body diagram of then-th spherical cap
of the loudspeaker array. It is worth noting that the spheri-
cal cap represents the driver diaphragm assembly including
voice coil. There are mechanical (FMn), acoustical (FIn

andFEn) and electromagnetical (FLn) forces acting on it.
FMn is due to the moving mass of then-th driver, as well
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as the compliance and resistance of its suspension.FIn and
FEn arise from the sound pressure fluctuation inside and
outside the spherical array, respectively.FLn is the Lorentz
force.

Figure 2: Free body diagram of then-th spherical cap of
the array.

Application of the second Newton’s law in then-th trans-
ducer yields to

FIn + FMn + FLn = FEn (8)

Following [7], FMn andFLn can be evaluated by using a
simple lumped parameter model based on the Thiele-Small
approach, so that

FMn = −ZMnun =

(

jωMn − Rn +
1

jωCn

)

un (9)

and

FLn =
(BL)n

REn

vn − (BL)2n
REn

un (10)

whereω is the angular frequency,ZMn is the mechani-
cal impedance of then-th driver,Mn is the moving mass
of the n-th driver, Rn is the mechanical resistance of the
n-th driver suspension,Cn is its mechanical compliance,
(BL)n is the force factor of then-th driver,vn is its voltage
andREn is the electrical resistance of then-th voice-coil.
The relation between these parameters and the well-known
Thiele-Small parameters can be easily found in the litera-
ture. See, for example, [15].

In this work, it is assumed that the transducers of the ar-
ray are mounted on an empty cavity, i.e., the drivers share
a common enclosure so that there is an internal acoustic
coupling between them. At low frequencies, when high-
order modes do not propagate inside the cavity, the enclo-
sure can be modeled as an acoustic compliance, so thatFIn

becomes [7]

FIn =

L
∑

l=1

SnSl

jωCB

ul (11)

whereSl is the effective radiation area of thel-th driver and
CB is the acoustic compliance of the enclosure, which is
given by [15]

CB =
VB

ρc2
(12)

whereVB is the volume of the cavity.

On the other hand, at high frequencies, the diaphragm dis-
placement is small yielding to irrelevant volume changes, so

that FIn can be neglected. However, controllability prob-
lems will take place at the natural frequencies of the cavity.
Anyway, since these frequencies for a spherical cavity are
easy to evaluate, there is no need to use a complex enclo-
sure model in order to identify them. For further details and
a discussion about the enclosure design for a loudspeaker
array, see [7].

FEn has a minor effect on the voltages when free-field ra-
diation is concerned. Thus, in order to evaluateFEn, it is
assumed that each transducer radiates as a piston mounted
on an infinite baffle. In addition, the external coupling be-
tween drivers is ignored [7]. Then,

FEn = ZRnS2
nun (13)

whereZRn is the radiation impedance of a circular pis-
ton mounted on an infinite baffle corresponding to then-th
driver. A mathematical expression forZRn can be found in
[16].

Substitution of Eqs.(9), (10), (11) and (13) into (8) yields to
(

ZMn +
(BL)

2
n

REn

+ ZRnS2
n

)

un (14)

−
L
∑

l=1

SnSl

jωCB

ul =
(BL)n

REn

vn

Equation (14) can be written in the matrix form as follows

Zu = v (15)

wherev ∈ CL contains the complex amplitude of the volt-
ages that feed the transducers andZ ∈ CL×L. If all drivers
of the array have the same electroacoustic characteristics, Z
becomes

Z (ω) = f (ω) 1 + g (ω) I (16)

where1 is anL×L matrix of all 1’s,I is the identity matrix
of orderL,

f (ω) = −RE

BL

S2

jωCB

(17)

and

g (ω) =
RE

BL
Ẑ (18)

whereẐ = ZMn +
(BL)2

n

REn

+ ZRnS2
n.

Now, letη be an eigenvector ofZ andµ be its correspond-
ing eigenvalue, then

Z (ω)η = µ (ω)η (19)

Substitution of Eq.(16) into (19) leads to

1η =

(

µ (ω) − g (ω)

f (ω)

)

η (20)

It is known that the eigenvalues of1 are

µ (ω) − g (ω)

f (ω)
=

{

0 multiplicity L − 1
L multiplicity 1

(21)
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Then, substitution of Eq.(21) into (19) leads to the follow-
ing necessary and sufficient condition for a vector be an
eigenvector ofZ:

L
∑

i=1

ηi = 0 or η1 = η2 = · · · = ηL (22)

Finally, Eqs.(21) and (22) lead to

µ (ω) =

{

g (ω) if
∑L

i=1 ηi = 0
Lf (ω) + g (ω) if η1 = · · · = ηL

(23)

It will be verified later that the ARMs of a spherical dodec-
ahedral loudspeaker array satisfy Eq.(22).

4 EQUALIZATION FILTERING

Let X (ω) be the Fourier transform of a mono signal which
one wants to diffuse trough a spherical loudspeaker array
with a directivity corresponding to an ARM of the array, so
thatu (ω) = ψiX (ω), whereψi ∈ RL is thei-th ARM of
the array. In addition, ifψi is assumed to be an eigenvector
of Z, Eqs.(15) and (19) yield to

vi (ω) = µi (ω)ψiX (ω) (24)

A block diagram is shown in Fig.(3). It is worth noting that
each element of the matrixΨ is a real number.

Figure 3: Block diagram representing the synthesis of the
i-th ARM of aL-driver loudspeaker array.

The i-th ARM can be achieved by multiplying the input
electrical signal by a set ofL real numbers given inψi.
Driver velocity equalization is provided byµi (ω). How-
ever, since radiation efficiency is highly dependent on fre-
quency, additional equalization must be accomplished in or-
der to take it into account. Letǫi (ω) be a filter that provides
such an extra equalization. Thus, for a complete equalized
system, tensions that must feed the drivers are given by

vi (ω) = Ei (ω)ψiX (ω) (25)

where
Ei (ω) ≡ ǫi (ω)µi (ω) (26)

Now, let A (rp, ω) ∈ CL contain the directivities of the
loudspeakers of the array evaluated by Eq.(6), i.e., it relates
the driver velocities with the sound pressure inrp, where
|rp| ≥ a. Then, the sound pressure field produced by the

spherical array when its vibration pattern corresponds to its
i-th ARM after equalization is

p̄i (rp, ω) = A (rp, ω)
T Z (ω)

-1
ψiEi (ω)X (ω) (27)

A block diagram is shown in Fig.(4).

Figure 4: Block diagram representing the sound field pro-
duced by thei-th ARM of aL-driver loudspeaker array after
equalization.

In this work, the equalization filterEi (ω) is approximated
by a rational polynomial function inz, i.e.,

Ei (z) ≈
∑B

k=0 bkz−k

∑D

k=0 dkz−k
(28)

wherez = e−jωTs andTs is the sampling period.

In the following, two equalization schemes are presented to
evaluateEi (ω) and, consequently,ǫi (ω). The first one is
based on the sound pressure response in a given radiation
direction, and the second one is based on the sound power
radiated by the spherical array.

4.1. Sound pressure

The sound pressure field,pi, produced by a spherical array
when the driver tensions are weighted according toψi is

pi (rp, ω) = A (rp, ω)
T Z (ω)

-1
ψiX (ω) (29)

Now, let r̂p be a given point in the acoustic domain and
Hi (ω) be a frequency response function defined as

Hi (ω) ≡ A (r̂p, ω)
T Z (ω)

-1
ψi (30)

= A (r̂p, ω)
T 1

µi (ω)
ψi

Hi (ω) can be written as the product of a minimum-phase

system,H(min)
i (ω), and an all-pass system,H

(ap)
i (ω), so

that [17]

Hi (ω) = H
(min)
i (ω)H

(ap)
i (ω) (31)

Comparison of Eqs.(27) and (30) shows that sound pres-
sure equalization in the direction̂rp could be achieved by
letting Ei (ω) = Hi (ω)

−1. However, this leads to a non-

realizable equalizer since the inverse ofH
(ap)
i (ω) is non-

causal. Fortunately, for the problem considered here, it will
be seen thatH(ap)

i (ω) is approximately a pure delay sys-
tem, so that it does not provide phase distortion. Thus, a

Page 4of7



Figure 5: ARMs of a spherical array withL = 12 andθ0 = 15.860.

system with linear phase and no pressure magnitude distor-
tion in the direction̂rp can be obtained by letting

Ei (ω) =
1

H
(min)
i (ω)

(32)

SinceEi (ω) is a minimum-phase system, the coefficients
in Eq.(28) can be obtained by using an IIR filter design
method which approximates a given but arbitrary magni-
tude response. In order to ensure that approximatedEi (ω)
is a minimum-phase system, its poles and zeros must be in-
side the unit circle in thez-plane.

4.2. Sound power

The equalization schema described in the previous section
is limited to a given radiation direction. This can be dealt
with by equalizing the sound power radiated by the array
instead of the sound pressure in a given radiation direction.

Consider Fig.(4), the diaphragm velocities corresponding to
thei-th ARM can be seen to be

u (ω) = Z (ω)
-1
ψiEi (ω)X (ω) = ψi

Ei (ω)

µi (ω)
X (ω) (33)

If the L transducers of the spherical array have the same
diaphragm area, which are modeled as spherical caps, one
has

S = 2πa2 (1 − cos θ0)L (34)

By normalizing the ARMs so thatψT
i ψi = 1, substitution

of Eq.(33) into (3) yields to

〈|u|2〉 =
1

2L

|Ei (ω)|2

|µi (ω)|2
|X (ω)|2 (35)

Sinceσ (u) = σ (ψi) = σi (ω), substitution of Eqs.(34)
and (35) into (2) leads to

Wi = σi (ω) ρcπa2 (1 − cos θ0)
|Ei (ω)|2

|µi (ω)|2
|X |2 (36)

Finally, for a unitary gain, the magnitude response of the
equalizer must be

|Ei (ω)| =
|µi (ω)|

√

σi (ω) ρcπa2 (1 − cos θ0)
(37)

Since only magnitude response is concerned in Eq.(37), the
coefficients in Eq.(28) can be obtained by using an IIR fil-
ter design method which approximates a given but arbitrary
magnitude response.

5 NUMERICAL EXAMPLE AND DISCUSSION

In order to illustrate and to discuss the ideas presented in the
previous sections, equalization filters for a spherical array
with L = 12 identical transducers are studied here.

The spherical caps (transducer diaphragm) are distributed
over a sphere of radiusa = 0.075m according to the do-
decahedron symmetry, so that spatial orientation of each
one of them is made equal to the vector normal to a face
of a dodecahedron. The aperture angle of the caps under
consideration isθ0 = 15.860 and the medium properties
are assumed to bec = 343m/s andρ = 1.21kg/m3. The
ARMs of such a spherical array are shown in Fig.5. It can
be verified that they satisfy Eq.(22), i.e., these ARMs are
eigenvectors ofZ.

Figure 6: Frequency response of sound pressure equalizers
for some ARMs of the spherical array.
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In order to evaluateµi (ω), all transducers are supposed to
be equal with the following characteristics:2in drivers, res-
onance frequency200Hz, mechanical quality factor4.72,
electrical quality factor0.80, total moving mass0.00104kg,
REn = 6.4Ω andSn = 0.00132m2.

A (rp, ω) is evaluated by truncating the series given in
Eq.(6) to orderN = 10 and letting|rp| = 20a = 1.5m,
i.e., it defines a spherical surface in the far-field. In ad-
dition, r̂p is chosen so that it corresponds to the main ra-
diation direction of the array in the low frequency range.
Thus, the frequency response of the sound pressure equal-
izers evaluated by Eqs.(32) and (30) for some ARMs are
shown in Fig.6. Since the directivity of an ARM becomes
very complicated at high frequencies, it may happen thatr̂p

matches a low pressure direction, leading to the high fre-
quency peaks shown in Fig.6.

Figure 7: Radiation efficiencies of the ARMs of a spherical
array witha = 0.075m, L = 12 andθ0 = 15.860.

Figure 8: Frequency response of sound power equalizers
for the ARMs of the spherical array.

The radiation efficiencies corresponding to each one of the
ARMs given inΨ are presented in Fig.7, which illustrates

the grouping characteristic of the ARMs discussed in [12].
The frequency response of the sound power equalizers eval-
uated by Eq.(37) are presented in Fig.8.

Comparison of Figs.6 and 8 shows no differences in the
frequency responses at low frequencies between pressure
equalization and power equalization. However, sound
power equalization presents two main advantages at high
frequencies. First, since power equalization is not based
on a single radiation direction, there are no high frequency
peaks. Second, only 4 filters can be used to deal with the
12 ARMs due to their grouping characteristic concerning
radiation efficiency.

Figure 9: Squared sound power response of the power
equalized audio system for the ARMs of the spherical ar-
ray. IIR equalization filters withB = D = 9.

Figure 10: Sound pressure response atr̂p for some ARMs
of the spherical array with power equalization. IIR equal-
ization filters withB = D = 9.

The MATLAB R© filter design toolbox has been used to
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obtain the coefficients of digital IIR filters that approxi-
mate the magnitude frequency response of the sound power
equalizers presented in Fig.8. Figure9 is the log magnitude
plot of the squared sound power response whenB = D = 9
in Eq.(28) andTs = (44100)

−1
s.

Figure8 shows that the filters must achieve large gain val-
ues in order to provide equalization at low frequencies, so
that application of such filters can damage the transducers.
Therefore, the low frequency response of the equalizers has
been neglected when evaluating the IIR coefficients. Then,
no equalization is achieved at low frequencies, as shown in
Fig.9.

Figure10shows the sound pressure response atr̂p for some
ARMs of the power equalized system. Phase response is
linear, as stated before, i.e., the equalized system does not
provide phase distortion in the direction ofr̂p.

6 CONCLUSION

In this work, equalization filters for the ARMs of a spheri-
cal loudspeaker array have been studied. Two equalization
approaches have been compared: sound power equalization
and sound pressure equalization in a given radiation direc-
tion.

Sound power and sound pressure equalizers can be approx-
imated by9th order IIR digital filters. Both equalization
strategies lead to filters with the same frequency response
at low frequencies. On the other hand, unlike sound power
equalizers, sound pressure equalizers can present peaks in
their frequency response at high frequencies due to the very
complicated directivity patterns of the ARMs. Therefore,
sound power equalization is more suitable than sound pres-
sure equalization. In addition, since the radiation efficien-
cies of the ARMs present grouping characteristic, sound
power equalization yields to a reduced number of filters
in comparison with sound pressure equalization, e.g., for
a dodecahedron-like array, only 4 sound power equalizers
can handle its 12 ARMs, while 12 sound pressure equaliz-
ers must be used for the same purpose.

It has also been shown that the ARMs of a spherical dodec-
ahedral loudspeaker array are eigenvectors of the transduc-
tion matrix ,Z, when the drivers are let to share a common
enclosure, so that the filter design is simplified.
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