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Abstract: The theoretical description of higher order Ambisonics uses both real and complex forms of spherical
harmonic solutions to the wave equation in spherical coordinates. This paper develops a description of sound fields
using consistent definitions of either form, and shows how the expansion coefficients of each are related. Both
descriptions produce complex field coefficients. We show that these complex coefficients are represented in quadrature
modulated form in a set of real Ambisonics signals. We also show that recording the complex form of Ambisonics
signals requires the use of the Hilbert transform to obtain the analytic form of each microphone signal. We develop
mode matching and simple source expressions for the decoder matrices for spherical loudspeaker arrays for both the
complex and real spherical harmonic forms and show that these are equivalent. The simple source decoder for plane
waves has a simple form that can be computed directly from the spherical harmonics.
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loudspeaker reproduction array for both cases, and sho
1 INTRODUCTION how they are related.

Ambisonics is an approach to the recording an#e commence with a discussion of real and complex
reproduction of three-dimensional sound fields whigh solutions to the wave equation. We note first that the
founded on the description of sound fields in sphericivavenumberk = w/c, wherewis radian frequency and
coordinates. The sound field may be expressed as a stns the speed of sound, and we will useor w in

of orthogonal terms with polar responses which are reatcordance with the conventions in [7].

spherical harmonic functions [1-6]. A recording

microphone must implement these polar responses t9 real AND COMPLEX SOLUTIONSTO THE
produce the Ambisonics encoded signals that describe the WAVE EQUATION

3D sound field. Ambisonics also describes two-

dimensional sound field recording and reproductising 2 1. One dimensional wave equation

a subset of the spherical harmonics (sectoral) or

cylindrical harmonics, but this case is not considereln® general solution to the one-dimensional wave
here. equation is [16]

Spherical harmonics can be defined either in termeaf p(x,t) =f (x—ct) +g (x+ct) (1)

[6] or complex [7-8] functions. Much of the recent _ _ ) _
development of higher order Ambisonics has been bas&e first term describes a solution that propagatehen

on the use of complex spherical harmonics [9-15]. Sind0sitivex direction and the second term propagates in the
the signals in Ambisonics recordings are real, this saisBegativex direction. At a single frequency, real solutions
the question of how compatible the complex-basedrgheghave the general form

is with the real-signal Ambisonics format. Furthermore p(x a)t)

the sound field coefficients in any spherical harmonic T
expansion are typically complex, which raises the =a cos(k(x-ct)+g¢)+a, cofk(x+ct)+g)

question of how the complex coefficients can be _ . ;
contained in real Ambisonics signals. =a cos(at) cofkx+q)+a, sifat) sifkx+g)

This paper provides a unified description of surround *& cos(at) cofkx+ ) -a, sifat) sifkc+g,)

sound recording and reproduc_tlon using t.)Oth compI%e note that the positive and negative traveling esav
and real forms of the spherical harmonics. We us

definiti £ th | and I herical h 1%ach consist of two terms in phase quadrature. Thaeosi
efinitions of the real and complex spherical harmesNt o, g he in-phase term and the sine term is the

that are consistent with each other, and show howetile _ -

and complex forms of sound field expansions are relatedtadrature term. #,=a, and ¢ = ¢, then the quadrature

We also derive the decoding matrix for a given

(@)



terms cancel, and the solution becomes a standing warecise as designing a Hilbert transformer using agtim
field, with no net propagation. filter design methods, or designing a complete complex

The complete solution to the 1D wave equation mué’ltnalytIC filter [19].

include all frequencies present in the sound fieldadde 2.2. Three dimensional wave equation

from equation (2), witla, anda, functions of frequency; In three dimensions solutions to the wave equation lwhic

are spherically symmetric can be expressed in splherica
a (w)cos(k(x-ct)+¢g)dw coordinates as [16]
3 1 1
r,t)=—f(r-ct)+—g(r+ct 10
a, (w)cos(k(x+ct) +@)dw p(r.1) ] (r-a) rg( ) (10)
_ o _ where the first term describes outgoing waves and the
This may also be written in terms of the complexdfiel  second incoming waves. Real solutions at a single

z(x, a),t) _ g [al (a)) o) | a (w) ei(k“”’Z)J @ frequency have the form

where p(x,w,t) = Re{z(x wt)} , as p(rwt) :%cos(k(r —ct)+q)

—s

p(x.t) =

+

O t——3 ©

(11)
P a
p(xt)= Re{ [[a(@)e ™™ +a, () e‘<kx+%>]ewdw} +=cos(k(r +at) +¢)

(5) Again, this can be written in quadrature form, ahd t
quadrature component is necessary to describe
propagating waves, and only disappears for a standing

P(x ) =a (w) el 4 g (w) 2 (@)  wave field(a, @) =(a,.9,).

where the spectrum

is defined for positiveu As discussed above, the complete solution including all
frequencies can be written in terms of the analygoa

The complex field as

o

z(xt) = J.[al(a)) e 4 3 (w) ei(k”%):le"“dw(?) p(r.t) =Re{z(r 1)}

0 - Re{j{ﬂe-i(kr-ﬁ) + az (C()) ei(krﬂé):leimda)} (12)

is termed the analytic signal [17]. It may be obtdifirom r r
p(x,t) by removing the negative frequency terms. For

example, writingcos(at) and sin(at) in equation (2)

[

3 REAL AND COMPLEX SPHERICAL HARMONIC

in terms of complex exponentials, and removing the SOLUTIONS TO THE WAVE EQUATION
negative frequency terms, yields equation (4). More

generally,z(x,t) is obtained fronp(xt) at any poink=X,  3.1. Complex spherical harmonic solutionsto the wave
by filtering p(xo,t) with a complex filter which eliminates equation
the negative frequencies. The complex filter haslide

impulse response [18] The general complex solution to the wave equation at
_ frequency w may be written in spherical coordinates
h (t) = 5(t) +— g (r.6.9as[7]
mt
: : _ z2(r,6,p,w;)
The Fourier transfqrm of this complex impulse response 13)
is the transfer function = Z Z (Unmhn(l) (kr) +Vnmhn(2) (kr))Ynm (9, ¢)}
o | iat n=0 m=-n
H(w)=||ot)+— e "dt=2U(w) (9
() J;[ 0 m} (@) © where h” (kr)=j (kr)+y (kr) is the spherical

which is the unit step function scaled by 2. The aimly Hankel  function of  the  first  kind,
filter thus eliminates negative frequencies and scates th™” (kr) = j (kr)-iy, (kr) is that of the second kind,

= jn
positive frequencies by 2 (to maintain the same tm%'nd j (kr) and y (kr) are the spherical Bessel
energy). n n

o d that th Wiic sianal b functions of the first and second kind. Since
ne could argue that the analytic signal can be yeasi| « " . .
generated by taking the FFT of the signal and zgrtie Ln (kr) De” then, with the positive frequency

negative frequencies. However, this approach is sot a
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convention, thed " coefficients describe incoming waves3-2- I?eal spherical harmonic solutionsto the wave
equation

and thev" terms describe outgoing waves. . . .
" going The complex spherical harmonics may be separated in

real and imaginary parts. The real part t@gmg) factors
_and is hence even in azimuth, while the imaginany s
harmonicgqqy. |n [6], the real and imaginary terms are dsfiras
Ynm (9, ¢J) follow the definition of [8,9] even and odd functions. Here, we will define the
normalised real spherical harmonics as

Ynm(aqp):\/MM P (cosd) €™ (14) iy \/sm(2n+1)(n-ln1)!,ﬂ

ar - (n+|m|)! o (nel])t”

The complex, normalised spherical

(cos8) cofmp)

n

where ! denotes factorial. This form has the property \/5_
Y."(8,9) =Y"(6,¢) and so avoids the ("1jerm that = —m[Ynm (6,9)+Y" (6?,(p)]
appears in [7]. 2

(18)
The complex spherical harmonics have the orthoggnalit nd
property a
m v * . v m £ (2n+1) (r]_|m|)I ‘m‘ 1
[¥r(6.0)Y (6.9) da =37 (15  O(6,9)= | P (cos8) sir(mep)
4 (n+|m|)!
where d"" =1 for n=uandm=v and is zero otherwise. JE, - .
=" (6.9)-Y," (6.9) ]

Standard spherical coordinates use the afigleom thez 2
axis. In Ambisonics the elevation angfabove the xy) (19)
plane is commonly used. Sinceos(6)=si(f) where £ =2|m>0and & =1. These have the
equation (14) is easily modified to use this cortizen orthogonality properties for integration over tiphere

Since surround sound involves the recording and
reproduction of sound fields that occur around \zegi
origin, we are interested in the interior solutiahich
contains no sound sources, and which contains Iradia J‘Em (9,¢7)OV(9,§0)dQ:0 1)
functions that are finite at the origin [7] " !

[E(0.0)E (Go)aa=a" (o)

2(r0.0.01) =" Y i (k) LT (K)Y (6.9)  for nuO[o]andmyOfon]. and
n=0 m=-n (16)
i Jwi ’ O
=€e“s(r,0,¢w) .[Onm(e,qa)ou“(&,qo)dQ:{ MY 22)
O,m=v=0

where s(r,8,p,w) is the complex spatial field at _ _ o
hile negativem values will not be required in wave

ield expansions (see below), they are well defiaed
£ (0.9)=E/(6.0) and 0"(8.9)=-0(6.0), so

frequency w For a truncated expansion up to an
including ordem=N, there areN+1)* complex expansion

coefficientsC" (k).
that
The real part of equation (16) is the sound pressur IEm (9 )E'm (H )dQ . 23)
" \O @) E, % =
p(r.0.0.01)=Rez(r 6 pwi)}
17)

=cos(at)s, (r 8 g w)- sifat)s (r 6 ¢ w) and

wheresg ands are the real and imaginary parts of the IOm (6’, (p) or (6?,(p)dQ =-1 (24)

complex spatial field.

The real propagating field is thus, as above, tie sf The complex spherical harmonic is related to thal re

two static spatial real fields oscillating in quatlre. form as

The sound pressure over all frequencies is — auisied i 1 . .

in the previous section — the real part of the isge Y (6.9) :_[En (6,9) +i0] (5’(”)] (25)
Fourier transform of equation (16), or equivalerthe Vén

integral of equation (17), over positive frequescie
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For interior solutions of the wave equation the ptar
spherical harmonic expansion of the complex spéiahl

is given by equation (16). Writiny" (8, ) in terms of

the real harmonics

s(r, ew):iin(kr)x
(26)

\/_[E 8,¢) +io] H¢)]

Real field in terms of complex coefficients
Writing C!"

imaginary parts yields the real sound pressure

p(r.8,p,wt)

_ Z‘“: i (k) Z {C?R cos(cut\)/——C"m| sir(ax)} e

_Z”: i (k) Z“: {CT COS(“?/“L_C:R sir(wt)}or

(27)

where the (8,¢) dependency of the harmonics is
implicit. Hence, the real field contains the realda

imaginary parts of the complex coefficient§ in
qguadrature modulated form.

Field expansion in real spherical harmonics, and
relationship to complex coefficients

Consider equation (26). Sinde” is even itmand Q" is
odd, the summation im can be written

m02\/— ( " (6,¢)+iO" (0,(/)))

moz\/—
=2 e 9¢(Mj

+imZn;\/§o?(9,<o)(—C“ ) ;C"_m(k)j

(k)(E" (6.9)-i0; (6.9))

(28)

in equation (16) in terms of its real and

o

(r.0.00)=3 i, (1t)

n=0

(29)
xZM E(6.¢)+ B (k)O;'(6.4) ]
where
Anm:\/z[c;wcnmj (30)
and
Bm:i@(c“m _ZCJ (31)
or in matrix form
11
A" c" cr
RGN M
2i 2

The matrixH is unitary form>0 and H"H = 0.5 for

m=0. Hence
cll_ 1 {1 —i} A" (33)
cm] Je L1 illE

or
1
cr=——(A"-iB") (34)
Je,
and
cm=— (A +iB)) (35)
n \/a h n

The real sound field is obtained from equation (29)

p(r.6,pwt)

)3, (k) X[ 42 () £ + £, ()0 ] @)
)T, () 2[4 ()

where A" and A" are the real and imaginary parts of

= cos(

E"+8) (k)O |

n

—sin(

A". This expresses the real sound field in termswof t

and hence the expansion of the complex spatial dsouQtatlc fields which oscillate in phase quadratlirean be

field in real harmonics is

rearranged as
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p(r.6.0.wt) o
:Z”:jn(kr)zn:[Anrl(k)cos(ax)—Anrl”(k) sir(wt)] E" 47T|F:Fs|

=-ikY j, (k) h? (kr,)
+§jn(kr)g[B:;(k)cos(ax)_B:;(k) sir(wt)]on"‘ —

37) XZ[E:‘(M) E"(6,.9)+0" (6.9)0"(6,.2) ]

which expresses the real field at each frequendgrims - n

of the quadrature modulated form of the underlying=-ik>_ j. (kr)h'” (k) > Y"(6,9)Y"(6..0)
complex coefficients. This expression is the fundatal n=0 m=-n

basis for Ambisonics recording and reproduction: &o
truncated expansion up to and including ofdethere are

N(N+1)/2+(N+1) even harmonic terms (which A" = —ikh® (k. )E™(6.,9).n0[0,w] mO[0n] (43)
includes the N+1) zonal harmonicn=0) terms) and a
further (N+1)/2 odd harmonic terms, making a total of B = —ikn'” (kr,)O" (6,,¢),n0[0,0] mO[ 0n] (44)

(N+1)* real Ambisonics signals, the same number as the ) o
complex case. and the complex expansion coefficients are

(42)

and so the real harmonic expansion coefficients are

cr =-iknh? (kr,)Y" (8, ¢) ,nO[0,0] mO[-n,n]

3.3. Examples (45)
A single-frequency complex plane wave has the twbinally, the real part of the point source (prodgci
equivalent expansions [6,7] outgoing wavefronts for a positive frequency) is
o = ikl |
elk-r :4ITZjn(kl’)x Re eiax €
anfr -7 |

Yi[EN(8.9)E (6.9)+0(6.9)0 (6.09)] = ki i, (k)[-y, (k) cosat + j, (kr.) sin(at)]x (46)

m=0 n=0

=4my 1, () 21" (6.4) " (6.9) Y[E(6.9)E(6.0)+O" (6.0)07(6,0)]

@8
where

and so the expansion coefficients are _
(6.9) molos] mo[ o e ()] -
A" =47m7"E" (8 ,¢),n0O[ 0,0l mO| ON 39
TR nroe S ey (e)eos{a) + (i) si)
B =47"0"(8,¢) ,n0[00] mO[1n]  (40)

. - 4 SOUND FIELD DECOMPOSITION
and the complex expansion coefficients are

We determine the sound field coefficients of theegal
real sound field in equations (27) and (37) usihg t

Note that these are independent of frequency. Hewev orthogonality elqu_ations I(lf),h (20). (dZP |an (zi:ge
general plane-wave field will consist of multipléape assume a simple integral of the sound Tield oveplere

waves with frequency-dependent amplitudes, ancheo at radiusR, ignoring the; practical Iimitati.ons caused by
expansion coefficients of a plane-wave field wik b the zeros of the spherical Bessel functions [11,V8¢

frequency-dependent.

o =4 (9.0) no[0w] mO[-ns] (1)

frequency w This simplifies the equalization of each
mode to that of a simple multiplication.

As a second example, a single-frequency point goatc 4.1. Sound Field Decomposition using complex
(r.,6,,¢) has the two equivalent expansions [6,7] harmonics

The complex coefficient€” may be found by taking the

analytic signal of each microphone signal to predtie
complex form in equation (16). Then the complex
decomposition at the single frequermys
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-1 W)Y (6.0) im{ p,,. (&)}
z, (wt)= . (kR)IZ(R,H,w, )Y (8,9) dQ )

:_—1J' p(
=" (k) e Ve, (R)
C" (k) cos(at) +C (k) sin(at)

R 8,p,wt)0" (8,¢)dQ

= - (52)

The complex coefficient is thus produced directigni £,
the analytic signal. The completer)th ambisonic “m “m .
signal is the inverse Fourier transform _Cnl (k)cos(wt)+CnR (k) sw(wt)

£

2, ()= €] (K)e“dw * {C?(k)—c;m(k) }
0 =Imq——"—F———=e¢
£

A full decomposition of the sound field up to théh
order thus requiresNé1)? complex signals, whegeas theHence,
real decomposition (equation (37)) requirds-1)° real ]
signals. However, since taking the analytic sigeduces ~ Puwc (wt) =Re{p, (wt)} +i Im{p,, (1)}
the signal bandwidth by a factor of two, the sample 1 _ .

of the analytic signal may be halved, so in priteifrere :—[C;" (k)e“ +(Cn’m (k) e'“) }

is no difference in the number of samples per sgécon &,

required to represent the complex and re
decompositions. However, the generation of theyaical

signal does require additional processing (seeicsect - ) -
2.1). coefficient. Note thatC" #C." because they have

(53)

6f—||ence the complex result obtained from the real sound
pressures includes the conjugate of the negative

complex terms that only depend on see examples

o . above. Hence the complex spherical harmonic
The complex coefficients cannot be determined ftoen  decomposition requires that the real microphone fgna
real microphone signals because the negativeand are first made analytic.
positive m coefficients are not separable. Specifically, ) . ) )

) . n o " , 4.2. Sound Field Decomposition using real harmonics

sinceE " =E  andOQ " =-0., then from equation (27)

. . The even harmonic decomposition of the real sourd fie
the real and imaginary parts of the complex . . )

. In equation (37) is obtained as

decomposition of the real pressure

1 S R,0 E"(8,p)dQ
Pre (1K) == (kR)fp(Rﬂ,(ﬂ,w,t)Ynm(HW)k dQ p”"E(w’t)_j (kR)Ip( 001)E(00)
Jn "
(50) =[ AL (k) cosat - A7 (k) sinat | (54)
are (see also equations (23) and (24)) = Re{ A" (k) ei“}
Re{ Parc (a),t)} and the odd harmonic decomposition is
:_;J-p(R,H,qz,w,t)Enm(e,(p)dQ P, (wt)= L jp(R6’¢wt)Om(9 9)dQ
Ve, i, (kR) mo (WU = gy PO BAS
_ (k) cos(at) -G (k) sin{a) - - [B7 (k) cosat - 87 (K) sin
£ .
] " =Re{B" (k) €“}
, G (k) cos(at) -C," (k) sin(«t) (55)
En Hence, the standard Ambisonics decomposition at each
cr(k)+C"(K) frequency produces the quadrature modulated
=Re %e’ components of the underlying sound field coefficietits.

the analytic signals ofp__ (t)and p,_(t) are taken

and then the complex field coefficientd” and B" may be

determined, and the complex coefficients determined
from equations (34) and (35). However, the complex
forms are not required for sound reproduction.
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5 SOUND FIELD REPRODUCTION (N +1)2 > L the least squares error solution may be

In Ambisonics, the matrixing of the Ambisonics signaldound at each frequency as [9,11]

to the loudspeakers is termed decoding. The goal of .

decoding is to produce the same sound field in thiemeg w(k) = [‘I’H‘I’ +/1I] v'C(k) (59)

of the centre of a loudspeaker array as the origioahd

field. To do this, we assume that the loudspeakers amaere is a regularization parameter. This solution tells
ideal monopole sources and we require that the sourd that the loudspeaker weights are obtained from the
field coefficients produced by the loudspeakers equapPmplex analytic Ambisonics signalS(k) by filtering
those of the original sound field. This approach rbay them with thel by (N+1)” matrix filter

termed the mode matching solution. ) S
We also present the simple source solution [7,11]ckvhi Q. = [T ¥ +/“:| ¥ (60)
is obtained by assuming ideal monopole loudspeakets ay
deriving the weights required to produce the desir
soundfield. This solution has an analytic form and does
not require an inverse matrix calculation. We preseet g (N +1)2 <L the loudspeaker weights are obtained
solution derived in [11] for complex harmonics aneé th
simple source solution obtained using real sphericg
harmonics.

e real parts of thie complex output signal®¢ are sent
the loudspeakers.

pm the minimum energy solution [9,11]

w(k)=¥" [ e +11] C(k) (61)
We assume a spherical array of loudspeakers at

coordinates(8,¢), O[1,L], that produce close to anwhere/ is included to allow reduction of the loudspeaker

equal sampling over the sphere. A number of samplinﬁ‘é‘aight energy if desired.
are available at [20] and these include the soliglean
weightings4 to allow an accurate discrete approximatiorsimple sour ce solution

to a continuous integral over the sphere. The simple source loudspeaker weights for a spherical

5.1. Reproduction using complex har monics loudspeaker array may be derived by matching the
interior and exterior field expansions on the surfafcthe
] ) sphere [7], or equivalently by deriving the sounddfie
M ode matching solution produced if the array weights were sampled versiorss of
Using the complex form of the point source (equatiosingle spherical harmonic and building the solutionaby
(42)), and the complex sound field description (eignat weighted sum of these terms [11]. The solution for
(16)), we require the approximate field producedlby positive frequencies and complex harmonics is

loudspeakers to equal the desired field ]
_iB8_ 1
w (k) = Z @ (

2(r,6.p,01) = (k) S (k) h? (kR) =

n=0

N ms m 9,
kR)gcnm (6.4) 62

L Each harmonic term in this equation satisfies the enod
XZ[Z‘M (k)Ynm (glgq)’}ynm (94,) matching equ_ation (57) and the simple source s_olution
menl 12 produces similar results to the mode matching inverse
e n approach [11]. TheL by (N+1)*> simple source
=d“> j (k) D cr (k)Y (6.9) reproduction matrixQcss thus has elements

(56) __ 1A "
chs (I'V’k) - 2 Yn (‘9\'@) (63)
For eachif,m) this requires khn( ) (kR)

(=ik) (kR)iW (K)Y"(8.¢) =c"(k) G7) ! 0[1L] ,vD[l,(N + ])2] wherev=n®+n+m+1. As
=1 for the mode matching case, the real part of thepbex

These mode matching equations may be written in matfinalrix outputs are sent to the loudspeakers.

form for each,m), 5.2. Reproduction using real harmonics
vw(k) =C(k) (58)
M ode matching solution

where ¥ is an .N+l) by L matrix, w(k) IS a vector of Using the spherical harmonic description of thel rea
loudspeaker weights at frequenicandC(K) is the vector sound field due to a point source (equation (46))each

of complex field coefficients. For the case whereg loudspeakers at the same rad®jsnd requiring the
weighted sum of these to match the original soueld f
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(equation (37)) yields the real sound pressure Imragc
equation

ki i, (k)[-y, (kR)cos(at) + j, (kR) sin(at)]

n=0

3w (K)[E7(6.0)ET(0.4)+07 (6,007 (6.4)]

m=0 |=1

=z, (kr)é[Aﬂ”; cos{at) - A7 sir(et) |E7 (6 9)
+31, () X B3 coslat) - 8] sir(a) 0] (6 ¢)

(64)

For eachn andm, and since the even and odd harmonics

are orthogonal, this requires
k[-y, (kR) cos(at) + j, (kR) sin(at)] 2-w (k) E] (6 #)

= [Aﬂ"; cos(at) - A" sir(wt)] =P, (1)
(65)

and
K[-y, (kR) cos(at) + J, (kR) sir(ax)]gw. ()07 (8 @)

=[ B] cos(at) - B} sin(at) | = p,, (t)
(66)

ik (R) X w ()07 (4.4) =87 (k) (70)

1=1

These two equations may be written for all modegsaup
Nth order as

o o)

o

(71)

where @_ is (N+1)(N/2+1) byL, and®_ is (N+1)N/2 by
L. (The complete matrix® is then N+1)® by L.) For
(N +1)° > L the weights may then be obtained from

w(k) =[@"®+1 | @ [:Etﬂ

Hence the loudspeaker weights are obtained from the
analytic form of the Ambisonics signatgk) andB(k) by
filtering them with thel. by (N+1)* matrix filter

(72)

Q. =[@' 0+ ] @ (73)
which must be computed for each frequekcgince this
solution produces the complex weights for positive
frequencyaw, the real decoder filters must be obtained by
using the conjugate weights for the corresponding
negative frequency, or by taking the real part loé t
complex time filter. In practice, the decoders arest
efficiently implemented using fast convolution, M

These two equations are the real mode matchingnpies of the set oN1) real Ambisonics signals are
equations, derived from the real Ambisonics signalgken and the FFT of each computed. At each pesitiv

p..(wt) andp__ (wt) (equations (54) and (55)).

frequency the vector of bin&(m) B(m)]" is multiplied by
Qr(M). The negative bins may be set to zero, and thle re

In order to solve for the speaker weights, we t#k& nharts of the inverse FFT outputs taken to prodinee t
analytic signal (using equation (47), (54) & (55))Ioudspeaker signals.

producing the complex forms

ik (R) & Y w (k) E7 (8.0) = A (k)€ (67)

1=1

and

ik (R) & Y w (k)07 (6.2) = B (K) & (68)

n
1=1

This is valid since if we match the complex forrtisgen
the real parts will also be matched.

For (N+1)°<L the controlled minimum energy
solution is

w(k) =" [ 0@" + I jl[g(k)}

w,

Equivalence of real and complex forms

The real and complex mode matching equations are
equivalent. The two real-harmonic mode matching

The time variation may now be removed and we dte lesquations ((67) and (68)) may be combined as

ik (kR) S (k) (E7 (4. 9) -107 (6.0))

with the real spherical harmonic mode matching
equations

-ikn” (kKR) 2w (k) E; (6.4) = A" (k) (69)
and

(75)
= A" (k) -iB) (k)
Scaling byl/\/g yields
ik (kR) S w (k)Y (4. @) =CI' (k) (76)

=1
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which is the complex mode matching equation. HencE&or a source at the loudspeaker array radig®, and
we have demonstrated that the complex and real

approaches have the same underlying mode matching E" 9

equations. However, the real harmonic approactwallo 5;% "W)

the use of real Ambisonics signals which do nouire .o (81)
the generation of the analytic signal. +£2.2.0,(6.2)0(9.9)

Simple Sour ce solution which is real and frequency-independent. This @qnat

As for the complex case (equation (62)), the simplalso applies for the plane wave case, and deschizsis
source approach may also be applied to reproducti@gcoding for any spherical array geometry.
using real spherical harmonics. Expanding equdit@)
in the same manner as equation (28) yields thelsimp 6 CONCLUSION
source solution
This paper has provided a unified description of 3D
W (k) Ambisonics based on complex or real spherical haitno
| N . functions. By using consistent definitions, theflioents
k hz) kR) [A E’(§.9)+BO] (9.4?)] for the real and complex sound field expansions are
n=0 Th m=0 simply related. The coefficients for either case an
(77)  general complex.

This equation satisfies the sum of equations (8@)(@0) The complex spherical harmonic expansion coeffisien
(since E" (5’.’@) and O:(Q,qq) are orthogonal). The can only be obtained from real microphone sigrfalke

loudspeaker weights can be written directly in terof analytic form of each m|crophone 5'9”"?' is firsten t.o
the vectors of ambisonics signai&) andB(k) and two produce a complex signal with no negative frequesici

decode matrices  Qgss and Qoss as The real spherical harmonic expansion coefficieats be

w(k) =Q_A(k)+Q_.B(k) with elements [3,9] obtained directly from the real microphone signafsl

they are encoded in quadrature modulated formenehl

iB Ambisonics signals, but this is all that is reqdirfor

Qus (1,v.k) == "(9.9) (78)  sound reproduction, and no analytic signal geramait

kh, (kR) required.

for | D[l,L] ,vIZI[l,(N+])(N | 2+ ])] The design of decoders for both complex and real
Ambisonics signals has been discussed. The complex

wherev=n(n-1)/2+n+m+1, and harmonic decoder need only process analytic sigaat
. so in principle it has complex impulse responses.
Q (I v k) _ iB Om( ,,qq) (79) However, the decoder would be implemented using fas

convolution, which only requires multiplication of

positive frequencies, and so it is relatively sienfib

for | D[l, |_] ,vD[l,(N + ])N /2] , where implement, with the real part of the outputs besegt to
the loudspeakers.

v=n(n-1)/2+m+1.

Kk (kR)

The real harmonic decoder contains real filter ilppu
These matrices may be used for the reproduction of responses, but since it too is most simply implewgin
general Ambisonics signafgk) andB(k). Note thaQoss the frequency domain where only positive frequesicie
has no elements fon=0. need be considered it is similar in implementatiorihe

For the direct synthesis of sound fields, (whicim ¢z complex decoder.

approximated as a sum of point sources), we dafige It has been shown that the decoders for real anplex
panning functions which describe the loudspeakdrarmonics have the same underlying mode matching
weights for a single point source. Using equati¢4®) equations.

and (44), The primary advantage of real harmonics is thay the
W (r 0.0 ,k) allow the transmission of real ambisonics signaithout
° ° requiring analytic filtering. In particular, the cteer

- L (k) & m elements for source radii equal to loudspeakeryarra
‘IQZWZE (Hs’@)En (‘9\'@) B0 radius (or for plane waves) are also real, makiecpding
R e particularly simple.
b (k) & ,
62 (k) =0 (6.2)0](6.4)
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