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Abstract: Girafe aims at being a versatile, modular software system for realising projects using Ambisonics or the
binaural virtual Ambisonics approach. It will be implemented as a set of unit generators and classes for the Supercollider
sound programming environment.Girafeeventually will evolve into a flexible toolkit for audio augmented environments. It
is targeted at both artistic applications in the field of interactive, virtual acoustics, as well as a tool for scientific research
in spatial audio and its artistic applications.
Currently, the implementation of the basic Ambisonics functionality of Girafe is being designed. This paper discusses the
functionalityGirafeshould provide and the implementation design with respect to its integration with Supercollider.
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1 INTRODUCTION

Audio augmented environments are a major subject in past
years’ scientific and artistic research. The European project
LISTEN [1] for the first time integratively explored both the
technological conditions and the aesthetical implications of
creating and using binaural audio augmented environments.

Since then, the research efforts being undertaken which
are connected to audio augmented environments are getting
more and more diverse. The fields of psychoacoustics and
multi-sensoric perception revealed various new research re-
sults, while, on the other hand, advanced technological ap-
proaches for spatial audio rendering became available and
feasible.

Amongst these, Higher Order Ambisonics (HOA) provides
promising means for greatly enhancing the rendering strate-
gies used for audio augmented environments and virtual
acoustics. Current computers are capable of doing massive
multichannel realtime audio processing, which is the most
important requirement for implementing HOA systems.

Artistic exploration of the capabilities of recent research re-
sults depends on the possibility of implementing these re-
sults. Most “pure” scientific research areas, however, do not
necessarily allow for accessing their reference implementa-
tions, as they are most probably also inadequate for being
dealt with by non-experts. A common platform which is
suitable for both research and application purposes could
help with bridging this gap.

Girafe aims at being such a platform. Its development is
driven by the aim for a versatile, flexible and modular sys-
tem, which, at the low level end, is open enough for exten-
sions and enhancements. At higher levels, it should allow

for creating an easy to use, yet powerful interface which
is targeted at application building, such as artistic projects,
but also the technical framework e. g. for listening tests in
spatial audio research.

In computer music, the sound programming platform Su-
percollider provides a framework which is suitable as a
basis for theGirafe system. It is designed for very effi-
cient multichannel realtime audio processing and providesa
sophisticated high level multi-paradigm programming lan-
guage.

This paper describes the basic building blocks of theGirafe
kernel for HOA and the design for integrating them with the
Supercollider environment.

2 GIRAFE’S BASIC FUNCTIONALITY

The kernel ofGirafe should provide the standard HOA op-
erations, such as encoding, rotating and decoding Ambison-
ics signals in an open, modular way. It would be desirable
to have the following basic functionality inGirafe:

2.1. Ambisonics Format

With Girafe, it should be possible to use different Ambison-
ics format variations, depending on the purpose of the ap-
plication. This includes different Ambisonics orders or de-
grees, fully periphonic or horizontal-only formats as wellas
mixed order systems or reduced formats, such as proposed
in [2]. This can be achieved by the separation of the actual
vector/matrix operations and the calculation of the coeffi-
cients, which is described in subsequent sections.

In principle, this separation also allows for using different
channel sequences and normalisation schemes. The stan-
dard implementation will use theAmbisonic Channel Num-
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Figure 1: Example block diagram of a more complex vir-
tual audio augmented environment application.

ber (ACN)convention [3] though, such that:

ACN = l ∗ (l + 1) + m (1)

The favoured normalisation scheme would be the semi nor-
malised 3 D form (SN3D), as discussed in [4, pp. 155 ff.].

2.2. Ambisonics Encoding

Encoding a signal to the Ambisonics domain means the
multiplication of the signal with the encoding coefficients
vector. In Girafe the calculation of this vector and the
generic multiplication operation are separated, instead of
having monolithic Ambisonics panning signal processing
units. This way, the encoding stage becomes very flexible
and determines the layout of the Ambisonics domain sig-
nal. Of course, all subsequent operations in the Ambisonics
domain have to take into account the actual layout of the
signal, which is achieved by the same flexibility.

2.3. Ambisonics Rotation

Ambisonics rotation is done by multiplying the Ambisonics
domain signal vector with the rotation matrix. This matrix
is calculated separately from the matrix multiplication oper-
ation inGirafe, which allows for rotating signals according
to their layout created at the encoding stage.

An interesting alternative for efficient rotation in 3 D is pre-
sented in [5]. Here, the rotation is expressed as three ro-
tations around thez-axis plus two fixed rotations of 90 de-
grees each around they-axis. This approach seems to be
more generic to future extensions towards higher orders, as
the rotation around thez-axis is fairly simple and can be
implemented efficiently.

2.4. Ambisonics Decoding

Decoding an Ambisonics signal to a specific real or virtual
loudspeaker layout is done by multiplying the signal vector
with the decoding matrix. Finding an optimal decoding ma-
trix especially for asymmetrical loudspeaker layouts is not
a straightforward task.Girafe at least should provide the
standard calculation method, which is the pseudo-inverse
matrix of the encoded loudspeaker positions.

2.4.1 Dual-Band Decoding

One possibility for improving the localisation of sound
sources is to use two decoding bands and to optimise them
independently according to psychoacoustic laws. The low
frequency band would be optimised to maximise the veloc-
ity vector (max rV ), while the high frequency band should
have a maximum energy vector (max rE).

Dual-band decoding is done by splitting the Ambisonics
signal using phase-aligned filters, followed by decoding the
bands separately with different decoding matrices.

Such band splitting filters can be found inAmbdec[6],
which is a standalone application providing dual-band de-
coding up to second order. For the use inGirafe, these filters
will be ported to Supercollider, which also would allow for
using them for higher order Ambisonics domains.

2.5. Distance Coding/Near Field Correction

In [7], distance coding for HOA has been introduced. At the
Ambisonics encoding stage, the distance of virtual sources
is encoded with respect to a reference radius of the playback
system. Before decoding, the signal still can be corrected in
order to match the actual speaker readius.

[9] introduces an implemention of near field coding filters
up to the fourth Ambisonics order. They have been ported
(though yet unpublished) to Supercollider unit generators.
Using these filters,Girafe supports Ambisonics distance
coding.

These filters also can serve for compensating for the near
field effect of the playback speakers in case of plane wave
encoding. In non-ideal playback systems, the speakers may
have different distances to the sweet spot, which might re-
quire separate near field correction for every speaker, along
with a delay correction. Applying a correction filter after
the decoding stage needs a decoder which outputs each Am-
bisonics order’s portions of each speaker separately, as the
filter curves differ for each ambisonic order.

3 SUPERCOLLIDER

Supercollider [10] is a generic purpose sound programming
environment originally developed as a proprietary, com-
mercial application for the Macintosh computer. In 2002,
Supercollider in its version 3 became Free Software and
shortly after was ported to the Linux platform.

Supercollider 3 introduced a client/server architecture.The
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Supercollider server,scsynth, incorporates a powerful re-
altime processing model. Small signal processing entities,
so calledunit generators, form the building blocks of larger
scale signal processing networks, so calledsynths. They are
organised in an ordered tree on the server, which also con-
trols their order of execution. The signal routing between
Supercollidersynthsis done bybusses, which allow for very
complex, multichannel routing schemes. This system archi-
tecture makes Supercollider an ideal platform for HOA ap-
plications. The Supercollider server is entirely controlled
by OSC, the Open Sound Controlprotocol [11], which
makes it potentially agnostic to different control clients, and
which also facilitates multi-node parallel signal processing.

For adding newunit generators, Supercollider provides a
simple plugin interface in the C++ language. So called
pseudo unit generatorsmay also be constructed dynami-
cally out of networks of simple mathematical operations,
most probably with some performance loss compared to na-
tive implementations of these networks.

The standard Supercollider client,sclang, is a fully fledged
programming language which implements thescsynthcon-
trol protocol. It is a dynamically typed, object oriented lan-
guage with many characteristics inherited from functional
programming languages, has a C-style syntax, and its inter-
preter incorporates realtime garbage collection.

The Supercollider language containsJITLib, the Just In
Time programming library, which was originally targeted
at live coding. Through its highly dynamic approach, it is
also very well suited for rapid prototyping for artistic mock-
ups, but also for validation of scientific research results or
for testing scenarios.

As sclangandscsynthusually only communicate viaOSC,
they may run on different machines, or one language client
might control several servers.

Realtime multi-user audio augmented environments may be
larger scale installations, which require both parallel pro-
cessing, but also have different constraints on the latency
of their signal processing. They may incorporate tracking
systems which control Ambisonics operations. For dealing
with control data on different levels of required realtime la-
tency, Supercollider offers great flexibility. Processingmay
take place on client and/or the server side, which makes it
possible to balance performance with convenience and sys-
tem load.Girafeshould enable the application developer to
use either way of operation.

4 IMPLEMENTATION DESIGN

In this section, the implementation design in Supercollider
for the basic Ambisonics operations ofGirafe is presented.
As mentioned in section2, one fundamental principle is the
separation of the actual vector or matrix operations from
the calculation of the coefficients. For Ambisonics decod-
ing, this is almost always the case, as the decoding matrix
usually is static. This approach could be extended also to
the encoding and rotation stage, although the coefficients

need to be recalculated at a certain rate, usually control rate
or a rate determined e. g. by the input of a tracking system.

The separation of the matrix operations and the calculation
of the coefficients has several avantages over a monolithic
approach with respect to the integration with Supercollider:

• Ambisonics encoding, rotating and decoding are
generic vector or matrix multiplications, independent
of the Ambisonics orders, format conventions, chan-
nel sequence etc., and therefore can be easily and effi-
ciently implemented as server-sideunit generators.

• Calculation of the coefficients can be done server-side
or client-side, depending on the calculation rate, tim-
ing and performance demands.

• Client-side calculations can benefit from powerful lan-
guage features, such as higher order functions or func-
tion composition.

• Server-side computing may take place in the same
synth as the vector/matrix operation or in a different
node, potentially combined with calculations for other
synths at the same time.

• Server-side calculations can be dynamically composed
as pseudo unit generators. Performance-relevant stan-
dard calculations can be factored out to native unit gen-
erators if necessary.

• Unified design principle for all Ambisonics operations,
which are therefore easier to encapsulate for user ac-
cess at a higher level of abstraction.

• As the separate coefficient calculation allows for a
dynamic implementation, different Ambisonics signal
layouts, normalisation schemes, reduced layouts etc.
can be implemented much easier than with monolithic
encoding/rotating/decoding plugins.

In order to allow for this flexibility, the coefficients have
to be forwarded to the vector/matrix operations using Su-
percolliderbuffers. Their content can be set viaOSCcom-
mands from the client side, or for server-side calculation us-
ing theSetBuf unit generator. If the coefficients are calcu-
lated in the samesynthas the vector/matrix operations take
place, theLocalBuf unit generator can be used, which op-
erates on a buffer local to thissynth. The downside of this
approach is an inherent overhead for the buffer operations
and the additional network traffic.

4.1. Ambisonics Encoding

Ambisonics encoding inGirafe is provided by a unit gen-
erator which multiplies a scalar (the input signal) with a
vector of variable length (the encoding coefficients). The
length of the vector is a creation-time argument. The unit
generator is a so calledMultiOutUGen, as it has a multi-
channel output, the Ambisonics signal. It can be processed
separately, or can be sent to an Ambisonics bus using the
Out unit generator. The encoding coefficients are read from
a buffer.
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GfAmbiEnc.ar(in, numOuts,
bufnum = -1, bufIndex = 0);

A first order encodingsynth with server-side coefficient
computing might be implemented like this:

SynthDef.new(’ambienc_1O’, {

arg out, in, azi, elev;

var coeffs = LocalBuf.new(4);
var cosElev = cos(elev);

coeffs.set([1, cosElev * sin(azi),
sin(elev), cosElev * cos(azi)]);

Out.ar(out, GfAmbiEnc.ar(In.ar(in, 1),
BufFrames.ir(coeffs), coeffs));

});

The same encoding with client-side coefficient computing
might look like this:

b = Buffer.alloc(s, 4);

x = { arg out, in, coeffs;

Out.ar(out, GfAmbiEnc.ar(In.ar(in, 1),
BufFrames.ir(coeffs), coeffs));

}.play;

// calculate coeffs when needed
b.setn(0, [1, cos(elev) * sin(azi),

sin(elev), cos(elev) * cos(azi)]);

4.1.1 Distance Coding

Distance coding could be implemented withGirafe using
the filters described in section2.5. For each Ambisonics or-
der, a different distance coding filter has to be applied. In
an efficient implementation, this would happen for each vir-
tual sound source already before the Ambisonics encoding
stage, as the number of channels and thus the number of
filters is much lower. For encoding a source signal which
is already split up into the contributions of different Am-
bisonics order, the encodingunit generatorhas to support
multiple input signals, such that the finalGfAmbiEnc sig-
nature design will look like this:

GfAmbiEnc.ar(in, numOuts,
bufnum = -1, bufIndex = 0,
routeBufnum = -1, routeBufIndex = 0,
sparseBufnum = -1, sparseBufIndex = 0,
sparseTrig = 1);

A separate vector of lengthnumOuts is read from a buffer,
which specifies the routing information of the input signal
vector to the Ambisonics output signal vector. The default
routing is to use only channel0 of the input signal.

GfAmbiEnc also provides sparse optimisation as de-
scribed in section4.2, although the benefit usually will not
as high as e. g. for Ambisonics rotation.

4.2. Ambisonics Rotation

Ambisonics rotation is provided by a unit generator which
multiplies the Ambisonics signal vector with a quadratic ro-
tation matrix. Likewise as with Ambisonics encoding, the
rotation matrix is read from a buffer. This allows for calcu-
lating the matrix on the language or server side.

GfAmbiRot.ar(in, numIns,
bufnum = -1, bufIndex = 0,
sparseBufnum = -1, sparseBufIndex = 0,
sparseTrig = 1);

Especially in the case of a rotation around thez-axis only,
the rotation matrix is sparse. Therefore,GfAmbiRot pro-
vides a way of optimising the matrix multiplication for a
static sparse matrix layout, which seems to be the most effi-
cient way in this special context. A configuration matrix can
be presented to the unit generator which will adjust its itera-
tion processes to only take into account the non-zero values
of the configuration matrix. ThesparseTrig input will
reread the configuration data. In case the actual rotation ma-
trix contains no zeros at “non-sparse” indices, which is true
e. g. for az-axis rotation with a non-zero angle, the same
buffer number forbufnum andsparseBufnum may be
used for initial configuration. The default is to use no sparse
matrix optimisation and to evaluate all indices of the rota-
tion matrix.

For efficient calculation of a 3 D rotation matrix, especially
using the approach mentioned in section2.3, optimised ma-
trix multiplications are also desirable. Both theRz and the
fixedRy90 rotation matrices are highly sparse. A special ro-
tation matrix calculating unit generator could benefit from
these optimisations.

4.3. Ambisonics Decoding

As with Ambisonics encoding and rotating, Ambisonics de-
coding is provided by a unit generator which performs the
matrix multiplication. The decoding matrix is communi-
cated via a buffer containingnumOuts rows ofnumIns
elements each, the latter depending on the Ambisonics or-
der and signal layout being used.

GfAmbiDec.ar(in, numIns, numOuts,
bufnum = -1, bufIndex = 0,
numRoutes = 1,
routeBufnum = -1, routeBufIndex = 0,
sparseBufnum = -1, sparseBufIndex = 0,
sparseTrig = 1);

GfAmbiDec also provides a sparse matrix configuration
input, which will optimise the unit generator to not take into
account zero fields in the decoding matrix. As the decod-
ing matrix most probably will be static for a given setup,
sparseBufnum can simply be the same asbufnum.

4.3.1 Near Field Correction

As described in section2.5, separate near field correction
for each speaker will need separate outputs for each Am-
bisonics order’s contribution to each speaker signal. When
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the argumentnumRoutes to GfAmbiDec is greater
than one, the actual number of output channels will be
numOuts ∗ numRoutes. In this caseGfAmbiDec will
expect a routing vector configuration of lengthnumIns in
routeBufnum which specifies the grouping of the Am-
bisonics channels to the output routing groups. For a fully
periphonic second order system,numRoutes will equal 3
and the contents ofrouteBufnum will be:

[ 0, 1, 1, 1, 2, 2, 2, 2, 2 ]

This means, that the zero order component (a. k. a. “W”-
channel) will be output at the current speaker output index,
the three first oder components will be summed up and out-
put to the following output index, and the five second order
components to the next following output channel. The near
field correction filters can then indepently work on each
Ambisonics order per speaker, before the corrected signals
are summed up for output.

5 OTHER IMPLEMENTATIONS

5.1. Ambisonics Unit Generators

There are some Ambisonics related unit generators al-
ready contained in the Supercollider distribution or in an
additional plugin package: theAmbisonicUGensand the
JoshAmbiUGenspackages. They are very well suited for
audio spatialisation at lower Ambisonic orders up to sec-
ond order. Their monolithic design is no affected by the
complexity and performance issues of higher orders as dis-
cussed in this paper.

5.2. AmbIEM

AmbIEM[12] is a Supercollider port of the Ambisonics sys-
tem developed at IEM Graz for Pd. Originally it is part of
the SonEnvir project on applications of sonification.

AmbIEM incorporates classes for higher order Ambisonics
encoding, rotating and decoding. All operations are imple-
mented as pseudo unit generators with networks of basic
mathematical operations. Therefore, the resultingsynthnet-
works get fairly complex, which eventually should affect
the overall performance. The matrix operations are not es-
pecially optimised.

AmbIEM does not provide the same flexibility asGirafe
eventually should do, as the coefficient calculations are
coded into the classes for some Ambisonic orders and the
fully periphonic approach only.

For the development ofGirafe, AmbIEM serves as a ref-
erence implementation. Prior experiments and artistic ex-
plorations which led to the design proposal ofGirafe were
carried out usingAmbIEM[13] [14].

6 CONCLUSION

The functionality aims ofGirafe and the design proposal
for its basic Ambisonic operations have been presented. As
Girafe should be open and extendable to further scientific

and artistic development, emphasis is put on these lower
level design issues, as they may turn out as drawbacks and
limitations later.

This paper should also serve as a discussion basis for the
upcoming implementation process ofGirafeand the design
of its higher level parts, which will eventually more visible
to the application developer.
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