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Abstract:

The minimum variance distortionless response (MVDR) beamforming technique is applied to a spherical

microphone array. Therewith optimal spatial filters are calculated. Besides, a freely chosen measure of stability in the
calculation facilitates a tradeoff between directivity and noise sensitivity. The beamforming method is compared to the
highly directive method of phase-mode processing and the highly robust method of delay-and-sum beamforming. Using
MVDR beamfoming, a stable and practical implementation of optimal spatial filters is found in between theses extremes.
This finding suggests the consideration of MVDR beamforming in the analysis of sound fields and speech enhancement

when applying spherical arrays.
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1 INTRODUCTION

Spherical arrays are today’s answer to a 3D analysis of the
sound field. In addition to the volumetric reproduction of
the sound field quantities in the interior of a sampled spher-
ical surface, the investigation of the spatial density of wave
amplitudes, which impinge onto the spherical surface, aug-
ments the room acoustical analysis and beamforming en-
ables the remote sound pickup in adverse acoustical situa-
tions.

The spherical geometry of the array is accompanied by the
potential virtue of an orthonormal decomposition of the
sound field into spherical harmonics. The term phase-mode
processing is widely used for the spatial, here spherical,
Fourier transforms. Based on a spherical Fourier transform
of the sound field, the spatial analysis of wave amplitudes
is performed by a plane wave decomposition. A high and
frequency independent spatial resolution is achieved. This
advantage is however limited in practical applications by a
high sensitivity to internal microphone noise, positioning
errors as well as phase errors of the transducers and the sig-
nal acquisition chain.

Since the delay-and-sum beamformer adds correlated sig-
nals in phase, uncorrelated random errors vanish the more
transducers are employed. The delay-and-sum technique is
therefore a robust beamforming technique. However it does
not establish sufficient gain, as long as the dimension of the
array is small in comparison with the wave length. Many
decades ago this drawback motivated the derivation of su-
perdirective arrays, the MVDR beamformers, that allow for
a broad-band gain at the expense of a high noise sensitivity.
As a result, the calculation of optimal filters was extended
by an extra constraint on robustness. Consequently, it be-
came possible to trade directivity for sensitivity and vice

versa.

Rafaely [1] compared the two opposite extremes of phase-
mode processing and delay-and-sum beamforming. In or-
der to realize a balance between the two desirable but in-
compatible features, Meyer and Elko [2] introduced MVDR
processing to the weighting of spherical harmonics. Based
on a combination of phase-mode and MVDR processing,
Meyer and Elko [2] built a flexible spherical beamformer,
with alterable directivity and noise sensitivty.

In this contribution, we pursue a similar trade-off by ap-
plying MVDR processing directly to the array output. In
this manner, more degrees of freedom are maintained in the
formulation of optimal filters and less computational com-
plexity is required.

First, the key points of the three presented approaches of
directional sound field analysis are outlined and in a sec-
ond part, these are contrasted in a simulated application to
spherical arrays.

2 ALGORITHMS

The array performance is often assessed with the directiv-
ity index (DI) and the robustness with the white noise gain
(WNG). The DI is a dB measure of the directivty factor
Q(k) and k is the wave number. The directivity factor is
described as the ratio of the maximum squared array re-
sponse |T'(6, ¢, k)|? with respect to the angles 6, ¢ to the
averaged squared array response |I'(6, ¢, k)|? due to diffuse
sound incidence from all directions. For discrete arrays, the
array response can be written as the inner product of the
frequency dependent weights or filter vector F (k) and the
propagation delay vector W (0, ¢, k):

L0, k) =F (w)W(0,6,k), (1)



where (0)T is the transpose. Therewith the directivity factor
becomes:
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where (o)* represents the complex conjugate and (o) rep-
resents the Hermitian. In (2) S(k) is the cross-spectral den-
sity matrix. Under the assumption of a diffuse sound field
and discrete sampling, S(k) is equivalent to:

Q(k) =

and M, is the location of the m-th microphone. The DI is
obtained as:

DI(k) = 10log,(Q(k)). 4)

To simplify the calculation of the WNG, the array steer-
ing direction and the propagation direction of a plane wave
are confined to the z-axis. The propagation delay vector
W (0, ¢, k) becomes:

W(0,0,k) = [/ ... e/M=o]T

) ®)
where O is the number of microphones. To calculate
the robustness of the array with the WNG, the array tar-
get response is referred to the mutually uncorrelated noise
sources of the sensors self noise and here expressed in dB:

WNG(k) = 10log;, (F

2.1. Delay-And-Sum Beamforming

The filters of a delay-and-sum method are calculated with
[3]:
W (k)

F(k) = WT()W (k)

(M

The resulting filters are:

F(k) = %[1 e IRz

efjk(zole)]T. (8)
The benefit of the delay-and-sum beamforming is the max-
imization of the WNG. As can be seen, the delay-and-
sum processing improves the SNR (related to internal noise
sources) of the output signal by 10log;,(O) with respect to
the SNR of one sensor.

2.2. Phase-Mode Processing

Since the purpose of this contribution is simply to compare
MVDR beamforming with the performance of phase-mode
processing, a simulation of the elaborate plane wave decom-
position is not included (the reader is referred to Rafaely
[4]). As an alternative, an analytic specification of the oper-
ation measures is given.

To begin, the array output of an order n limited plane-wave
decomposition array (n < IN) can be written as [1]:

€))

where P, is the Legendre polynominal. The angle © de-
fines the angle between the arriving wave (6, ¢g) and the
array look direction (8;, ¢;) [4]:

cos © = cos Oy cos O; + cos(pg — ¢;) sin by sin ;.  (10)
For a spherical array steering in the direction of an arriving

plane wave with O microphones and a maximal order IV,
where O > (N + 1)2, the WNG is calculated with [1]:

SN @n+ 1|

O
2 N
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(11)

where b,, is the modal coefficient and for an open sphere
defined as:

WNG(kr) =10log;,

b (kr) = 4mi™j, (kr). (12)

In (12), r is the radius of the array, ¢ = y/—1 and j,, is a
spherical Bessel function of first kind. In case of (0;, ¢;) =
(0,0) target direction, i.e., the z-axis, the DI can be written
as:

SN a1
S o(2n+1)

DI = 10log,,, (13)

As apparent from these formulas, the array output I" as well
as the DI are frequency independent (apart from aliasing,
which is not considered here), while the WNG is a function
of kr.

2.3. MVDR Beamforming

The optimal filters of the MVDR beamformer result from
the optimization task to minimize the total output power
of the array (i.e., the signal variance, assuming zero mean)
while preserving unity gain (the distortionless response) in
the look direction. The optimal filters are given by [5]:

WH(k)S (k)

P = s ow

(14)

where (o)1 is the matrix inverse. When these filters are
applied to arrays with a microphone spacing of Ad < \/2
a superdirective beam is established. However, superdirec-
tive arrays show a large noise sensitivity. Therefore the op-
timization is extended by a second constraint on the WNG.
Using the stability factor 5(k), the optimal filter can be
rephrased as [5]:

_ WHR)(S (k) + AR
WHR)(S (k) + B W (k)

F' (k) (15)

in here I is the identity matrix. With S(k)I a relative level
of sensor noise is injected in each microphone. This uncor-
related noise adds to the isotropic noise of the cross-spectral
density matrix S and the robustness of the optimal filter can
be varied.
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Figure 1: (A) shows the performance with the directivity index (DI) and the white noise gain (WNG) of the presented
beamforming techniques applied to spherical array of O = 6 microphones and » = 2 cm radius (for the phase-mode
processing the orderis N = 1), (B) O =26, r =2cm, N =3,(C) O =26,r=4cm, N =3
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Figure 2: Directional response of the delay-and-sum beamformer (black), the MVDR beamformer (red) and the plane
wave decomposition array (-, black) for r = 2 cm, 8 = 0.005, O = 6 and N = 1. Note that the directivity of the
plane wave decompostion array is calculated analytically. As the spatial Nyquist frequency of the phase-mode array is at
approximately 3 kHz, the phase-mode directivity is not included in the plots of 4 kHz and 6.3 kHz.

Page 4of 5



3 SIMULATION

To illustrate the performance of the MVDR beamformer
in comparison with the delay-and-sum beamformer and the
plane-wave decomposition arrays, three different spherical
array configurations were analyzed (named A, B and C). An
efficient spatial sampling scheme on the sphere, "Lebedev-
Grids" [6], was chosen to enable a fair comparability be-
tween the beamforming methods and the phase mode pro-
cessing. In all three simulations, no minimal WNG was
determined in the optimization of the optimal MVDR fil-
ters. Instead, the optimal filters in (15) were calculated with
a fixed set of 3.

In situation (A) an open sphere with a radius of r = 2
cm and a first order sampling grid of the phase-mode pro-
cessing (with Lebedev 6 quadrature points) is analyzed.
Figure 1, (A) shows the resulting DI and the WNG for
the delay-and-sum beamforming, the MVDR beamforming
(with different stabilization factors [3) and the plane wave
decomposition array. The spatial Nyquist frequency is de-
termined by the phase-mode processing with approximately
3 kHz. As expected, the delay-and-sum beamformer es-
tablishes hardly any directivity below 1 kHz and shows a
constant WNG at about 8 dB. The phase-mode process-
ing features a uniform directivity of 6 dB at the expense
of amplifying noise at low frequencies, which is manifested
in a low WNG. The MVDR beamformer reaches a com-
promise between DI and WNG depending on the stabiliza-
tion factor 3. When (3 increases, the optimal filters conse-
quently converge to delay-and-sum filters. Moreover, the
MVDR beamformer exposes a much higher gain at higher
frequencies due to the fact that the analytic formulation of
the phase-mode processing implies an order-limited signal
to prevent spatial aliasing. In terms of DI and WNG, this
behavior shows a feasible advantage of the MVDR beam-
forming over phase-mode processing when using spherical
arrays that allow only for lower order phase-mode process-
ing (see also Figure 2 for a comparison of the directivity
plots).

When a phase-mode processing of third order (N = 3)
is employed, the slope of the WNG approaches 6 N dB
per octave [2]. A suitable array with O = 26, r = 2
cm and a spatial Nyquist frequency of 8 kHz is analyzed
in Figures 1, (B). Again, a high and constant directiv-
ity of the phase-mode processing is observed with DI =
20log,((N +1) =~ 12 dB. For MVDR beamformers this DI
is again exceeded for high frequencies. Note, for superdi-
rective end-fire arrays the maximum DI is even approxi-
mated with 20 log,,(O). As can be seen, the delay-and-sum
beamformer behaves similar to the spatial sampling with
O = 6 in (A). In case the array size is stretched with re-
spect to the wave length, the directivity is increased. This
is found in Figure 1, (C), where the radius was changed to
4 cm. At the same time, the spatial Nyquist frequency of
the phase-mode processing was lowered to 4 kHz. The DI
of the phase-mode processing remains at 12 dB while the
WNG reaches the maximum one octave earlier. The same
effect is observed with the MVDR beamformer. Since the

resolution of the spatial sampling is reduced by two upon
the surface, the slopes of DI and WNG reach their maxima
an octave earlier.

4 CONCLUSION

In this contribution three techniques of directional sound
field analysis were investigated by means of spherical ar-
rays. The presented techniques were phase-mode process-
ing, delay-and-sum and MVDR beamforming. As a conse-
quence of today’s computational power, microphone arrays
are often used with phase-mode processing. Phase-mode
processing is flexible throughout the analysis and offers
high spatial resolution as compared with classical delay-
and-sum beamforming. This holds also for the application
of phase-mode processing to spherical arrays. However, the
robustness is poor, especially at kz < N. There are several
ways to circumvent this drawback and to build more robust
phase-mode arrays. This is possible by e.g., measuring the
sound field at different radii [1] or by employing only op-
timal modes [2]. In here, it has been shown to negotiate a
fair compromise between DI and WNG for spherical arrays
by way of MVDR beamforming. The MVDR beamformer
sets the limit of directivity at fixed grids without stabiliza-
tion. When applying a stabilization, it has been shown that
the MVDR beamforming can maintain this DI improvement
over the phase-mode processing at reasonable noise sensi-
tivity. Although MVDR beamforming lacks the potential to
detach the 3D controlled beamforming from the sampling
grid, as it is possible for the spherical coding of the phase-
mode processing, it provides flexibility to establish a highly
directional beamformer at a predefined robustness. Finally,
fixed MVDR optimized filters are easily applicable in prac-
tical applications where high directionality and robustness
are needed.
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